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Foreword

Why have a book about the relation between requirements and architecture?

Requirements provide the function for a system and the architecture provides the

form and after all, to quote Louis Sullivan, “form follows function.” It turns out not

to be so simple. When Louis Sullivan was talking about function, he was referring to

the flow of people in a building or the properties of the spaces in the various floors.

These are what we in the software engineering field would call quality attributes, not

functionality. Understanding the relation between requirements and architecture is

important because the requirements whether explicit or implicit do represent the

function and the architecture does determine the form. If the two are disconnected,

then there is a fundamental problem with the system being constructed.

The figure below gives some indication of why the problem of relating require-

ments and architecture is a difficult one (Fig. 1).

l There are a collection of stakeholders all of whom have their own agendas and

interests. Reconciling the stakeholders is a difficult problem.
l The set of requirements are shown as a cloud because some requirements are

explicitly considered in a requirements specification document and other require-

ments, equally or more important, remain implicit. Determining all of the

requirements pertaining to a system is difficult.
l The double headed arrow between the requirements and the architecture reflects

that fact that requirements are constrained by what is possible or what is easy.

Not all requirements can be realized within the time and budget allotted for a

project.
l The feedback from the architecture to the stakeholders means that stakeholders

will be affected by what they see from various versions of the system being

constructed and this will result in changes to the requirements. Accommodating

those changes complicates any development process.
l The environment in which the system is being developed will change. Technology

changes, the legal environment changes, the social environment changes, and

the competitive environment changes. The project team must decide the extent

to which the system will be able to accommodate changes in the environment.
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The authors in this book address the issues mentioned as well as some additional

ones. But, as is characteristic of any rich problem area, they are not definitive. Some

thoughts about areas that need further research are.

l Why not ask requirements engineers and architects what they see as the largest

problems? This is not to say that the opinions expressed by the architects or

requirements engineers would be more than an enumeration of symptoms for

some deeper problem but the symptoms will provide a yardstick to measure

research.
l What is the impact of scale? Architecture is most useful for large systems.

To what extent are techniques for bridging the requirements/architecture gap

dependent on scale? This leads to the question of how to validate any assertions.

Assertions about software engineer ing methods or techniques are very difficult

to validate because of the scale of the systems being constructed. One measure is

whether a method or technique has been used by other than its author. This, at

least, indicates that the method or technique is t ransferable and has some “face”

validity.
l What aspects of the requirements/architecture gap are best spanned by tools and

which by humans? Clearly tools are needed to manage the volume of require-

ments and to provide traceability and humans are needed to pe rform design

work and elicit requirements from the stakeholders. But to what extent can tools

support the human elements of the construction process that have to do with

turning requirements into designs?
l Under what circumstances should the design/constrain arrow above point to the

right and under what circumstances should it point to the left? Intuitively both

directions have appeal but we ought to be able to make more precise statements

Help specify

Design/constrain

Platform

Middleware

Application

Stakeholders

Requirements–
explict or implict

Use/construct systems
derived from

Architecture

Fig. 1 A framing of the topics covered in this book
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about when one does synthesis to generate a design and when one does analysis

to determine the constraints imposed by the architectural decisions already

made.

These are just some thoughts about the general problem. The chapters in this

book provide much more detailed thoughts. The field is wide open, enjoy reading

this volume and I encourage you to help contribute to bridging the requirements/

architecture gap.

Len Bass

Software Engineering Institute

Pittsburgh, Pa, USA
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Foreword

It must be the unique nature of software that necessitates the publication of a book

such as this – in what other engineering discipline would it be necessary to argue for

the intertwining of problem and solution, of requirements and architectures?

The descriptive nature of software may be one reason – software in its most basic

form is a collection of descriptions, be they descriptions of computation or descrip-

tions of the problems that the computation solves. After many years of focusing on

software programs and their specifications, software engineering research began

to untangle these descriptions, for example separating what a customer wants from

how the software engineer delivers it. This resulted in at least two disciplines of

description – requirements engineering and software architecture – each with their

own representations, processes, and development tools. Recent years have seen

researchers re-visit these two disciplines with a view to better understand the rich

and complex relationships between them, and between the artifacts that they

generate. Many of the contributions in this book address reflectively and practically

these relationships, offering researchers and practicing software engineers tools to

enrich and support software development in many ways: from the traditional way in

which requirements – allegedly – precede design, to the pragmatic way in which

existing solutions constrain what requirements can – cost-effectively – be met. And,

of course, there is the messy world in between, where the customer needs change,

where technology changes, and where knowledge about these evolves.

Amid these developments in software engineering, the interpretation of software

has also widened – software is rarely regarded as simply a description that executes

on a computer. Software permeates a wide variety of technical, socio-technical, and

social systems, and while its role has never been more important, it no longer serves

to solve the precise pre-defined problems that it once did. The problems that

software solves often depend on what existing technology can offer, and this

same technology can determine what problems can or should be solved. Indeed,

existing technology may offer opportunities for solving problems that users never

envisaged.

ix
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It is in this volatile and yet exciting context that this book seeks to make a

particularly novel contribution. An understanding of the relationships between the

problem world – populated by people and their needs – and the solution world –

populated by systems and technology – is a pre-requisite for effective software

engineering, and, more importantly, for delivering value to users.

The chapters in this book rightly focus on two sides of the equation – require-

ments and architectures – and the relationships between them. Requirements

embody a range of problem world artifacts and considerations, from stakeholder

goals to precise descriptions of the world that stakeholders seek to change. Simi-

larly, architectures denote solutions – from the small executable program to the full

structure and behavior of a software-intensive product line.

The ability to recognize, represent, analyize, and maintain the relationships

between these worlds is, in many ways, the primary focus of this book. The editors

have done an excellent job in assembling a range of contributions, rich in

the breadth of their coverage of the research area, yet deep in addressing some of

the fundamental research issues raised by ‘real’ world applications. And it is in this

consideration of applications that their book differs from other research contri-

butions in the area. The reason that relating requirements and architectures is an

important research problem is that it is a problem that has its origins in the

application world: requirements can rarely be expressed correctly or completely

at the first attempt, and technical solutions play a large part in helping to articulate

problems and to add value where value was hard to pre-determine. It is this ‘messy’

and changing real world that necessitates research that helps software engineers to

deliver systems that satisfy, delight and even (pleasantly) surprise their customers.

I am confident that, in this book, the editors have delivered a scholarly contribution

that will evoke the same feelings of satisfaction, delight and surprise in its readers.

Lero (Ireland) & The Open University (UK) Bashar Nuseibeh

April 2011

x Foreword
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Preface

This book brings together representative views of recent research and practice in

the area of relating software requirements and software architectures. We believe

that all practicing requirements engineers and software architects, all researchers

advancing our understanding and support for the relationship between software

requirements and software architectures, and all students wishing to gain a deeper

appreciation of underpinning theories, issues and practices within this domain will

benefit from this book.

Introduction

Requirements Engineering and Software Architecture have existed for at least

as long as Software Engineering. However, only over the past 15–20 years have

they become defined as sub-disciplines in their own right. Practitioners know that

eliciting and documenting good requirements is still a very challenging problem

and that it forms a heady mix with the difficulties inherent in architecting modern,

complex heterogeneous software systems. Although research in each area is still

active, it is in their combination that understanding is most actively sought.

Presenting the current state of the art is the purpose of this book.

Briefly, for requirements engineering to have taken place, a set of requirements

will have been elicited from often multiple stakeholders, analyzed for incomplete-

ness, inconsistency and incorrectness, structured so they can be effectively shared

with developers. As one would expect, large, complicated systems with a wide

range of stakeholders – such as large banking, telecommunications and air traffic

control systems, distributed development teams – have emerging and evolving

requirements which make satisfaction very challenging. However, even smaller

systems that are highly novel also present challenges to requirements engineers e.g.,

in the rapidly changing consumer electronics domain. As requirements are typically

conceptualized and expressed initially in natural language by multiple stakeholders,

identifying a set of consistent and complete requirements in a (semi-) formal model

xi



www.manaraa.com

for use by developers remains very challenging. These formalized requirements

then must be satisfied in any architectural solution and the imprecision in moving

from informal to formal requirements complicates this.

Good software architecture is fundamental to achieving successful software

systems. Initially this meant defining the high level system decomposition com-

bined with technological solutions to be used to meet requirements previously

identified and codified. More recently this has grown to encompass the repre-

sentation and use of architectural knowledge throughout the software engineering

lifecycle, effective reuse of architectural styles and patterns, the engineering of self-

adapting and self-healing autonomic system architectures, and the evolution of

complex architectures over time. Without good architectural practices, software

becomes as unstable and unreliable as construction without good foundational

architecture: Quality attributes are not properly managed and risks are not mitigated.

What is Relating Software Requirements to Architecture?

Software requirements and architecture are intrinsically linked. Architecture solu-

tions need to realize both functional and non-functional requirements captured and

documented. While changes to a set of requirements may impact on its realizing

architecture, choices made for an architectural solution may impact on require-

ments e.g. in terms of revising functional or non-functional requirements that can

not actually be met.

A range of challenges present themselves when working on complex and

emerging software systems in relating the system’s requirements and its architec-

ture. An incomplete list includes: When a requirement changes, what is the impact

on its architecture? If we change decisions made during architecting, how might

these impact on the system’s requirements? How do we trace requirements to

architecture elements and vice versa? How do new technologies impact on the

feasibility of requirements? How do new development processes impact on the

relationship between requirements and architecture e.g. agile, out sourcing, crowd

sourcing etc? How do we relate an item in the requirements to its realizing features

in the architecture and vice-versa, especially for large systems? How do we share

requirements and architectural knowledge, especially in highly distributed teams?

How do we inform architecture and requirements with economic as well as func-

tional and non-functional software characteristics? How do practitioners currently

solve these problems on large, real-world projects? What emerging research direc-

tions might assist in managing the relationship between software requirements and

architecture?

In this book a range of approaches are described to tackle one or more of these

issues. We interpret both “requirements” and “architecture” very widely. We also

interpret the relationship between requirements and architecture very widely,

encompassing explicit relationships between requirements and architecture parti-

tions and constraints, to implicit relationships between decisions made in one

xii Preface
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tangentially impacting on the other. Some of the contributions in this book describe

processes, methods and techniques for representing, eliciting or discovering these

relationships. Some describe technique and tool support for the management of

these relationships through the software lifecycle. Other contributions describe case

studies of managing and using such relationships in practice. Still others identify

state of the art approaches and propose novel solutions to currently difficult or even

intractable problems.

Book Overview

We have divided this book into four parts, with a general editorial chapter providing

a more detailed review of the domain of software engineering and the place of

relating software requirements and architecture. We received a large number of

submissions in response to our call for papers and invitations for this edited

book from many leading research groups and well-known practitioners of leading

collaborative software engineering techniques. After a rigorous review process 15

submissions were accepted for this publication. We begin by a review of the history

and concept of software engineering itself including a brief review of the disci-

pline’s genesis, key fundamental challenges, and we define the main issues in

relating these two areas of software engineering.

Part I contains three chapters addressing the issue of requirements change

management in architectural design through traceability and reasoning. Part II

contains five chapters presenting approaches, tools and techniques for bridging

the gap between software requirements and architecture. Part III contains four

chapters presenting industrial case studies and artefact management in software

engineering. Part IV contains three chapters addressing various issues such as

synthesizing architecture from requirements, relationship between software ar-

chitecture and system requirements, and the role of middleware in architecting for

non-functional requirements. We finish with a conclusions chapter identifying

key contributions and outstanding areas for future research and improvement of

practice. In the sections below we briefly outline the contributions in each part of

this book.

Part 1 – Theoretical Underpinnings and Reviews

The three chapters in this section identify a range of themes around requirements

engineering. Collectively they build a theoretic framework that will assist readers to

understand both requirements, architecture and the diverse range of relationships

between them. They address key themes in the domain including change manage-

ment, ontological reasoning and tracing between requirements elements and archi-

tecture elements, at multiple levels of detail.

Preface xiii
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Chapter 3 proposes Change-oriented Requirements Engineering (CoRE), a

method to anticipate change by separating requirements into layers that change

at relatively different rates. From the most stable to the most volatile, the authors

identify several layers including: patterns, functional constraints, and business

policies and rules. CoRE is empirically evaluated by the authors by applying it to

a large-scale software system and then studying the observed requirements change

from development to maintenance. Results show that CoRE accurately anticipates

the relative volatility of the requirements and can thus help manage both require-

ments evolution but also derivative architectural change.

Chapter 4 introduces a general-purpose ontology that the authors have developed

to address the problem of co-evolving requirements and architecture descriptions

of a software system. They demonstrate an implementation of semantic wiki that

supports traceability between elements in a co-evolving requirements specifications

and corresponding architecture design. They demonstrate their approach using a

reuse scenario and a requirements change scenario.

Chapter 5 investigates homogeneous and heterogeneous requirements traceabil-

ity networks. These networks are achieved by using event-based traceability and

call graphs. Both of these traces are harvested during a software project. These

traceability networks can be used in understanding some of the resulting architec-

tural styles observed based on the real time state of a software project. The authors

demonstrate the utility of such traceability networks to monitor initial system

decisions and identify bottlenecks in an exemplar software project, a pinball

machine simulator.

Part 2 – Tools and Techniques

The five chapters in this section identify a range of themes around tools and

techniques. Good tool support is essential to managing complex requirements and

architectures on large projects. These tools must also be underpinned by techniques

that provide demonstrative added value to developers. Techniques used range from

goal-directed inference, uncertainty management, problem frames, service compo-

sitions, to quality attribute refinement from business goals.

Chapter 7 presents a goal-oriented software architecting approach, where func-

tional requirements (FRs) and non-functional requirements (NFRs) are treated as

goals to be achieved. These goals are then refined and used to explore achievement

alternatives. The chosen alternatives and the goal model are then used to derive a

concrete architecture by applying an architectural style and architectural patterns

chosen based on the NFRs. The approach has been applied in an empirical study

based on the well-known 1992 London ambulance dispatch system.

Chapter 8 describes a commitment uncertainty approach in which linguistic and

domain-specific indicators are used to prompt for the documentation of perceived

uncertainty. The authors provide structure and advice on the development process

so that engineers have a clear concept of progress that can be made to reduce

xiv Preface
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technical risk. A key contribution is in the evaluation of the technique in the engine

control domain. They show that the technique is able to suggest valid design

approaches and that supported flexibility does accommodate subsequent changes

to requirements. The authors’ aim is not to replace the process of creating a suitable

architecture but to provide a framework that emphasizes constructive design

actions.

Chapter 9 presents a method to systematically derive software architectures from

problem descriptions. The problem descriptions are set up using Jackson’s problem

frame approach. They include a context diagram describing the overall problem

situation and a set of problem diagrams that describe sub-problems of the overall

software development problem. The different sub-problems are the instances

of problem frames and these are patterns for simple software development pro-

blems. Beginning from these pattern-based problem definitions, the authors derive a

software architecture in three steps: an initial architecture contains one component

for each sub-problem; they then apply different architectural and design patterns

and introduce coordinator and facade components; and finally the components of

the intermediate architecture are re-arranged to form a layered architecture and

interface and driver components added. All artefacts are expressed using UML

diagrams with specifically defined UML profiles. Their tool supports checking of

different semantic integrity conditions concerning the coherence of different dia-

grams. The authors illustrate the method by deriving an architecture for an auto-

mated teller machine.

Chapter 10 proposes a solution to the problem of having a clear link between

actual applications – also referred to as service compositions – and requirements the

applications are supposed to meet. Their technique also stipulates that captured

requirements must properly state how an application can evolve and adapt at run-

time. The solution proposed in this chapter is to extend classical goal models to

provide an innovative means to represent both conventional (functional and non-

conventional) requirements along with dynamic adaptation policies. To increase

support to dynamism, the proposal distinguishes between crisp goals, of which

satisfiability is boolean, and fuzzy goals, which can be satisfied at different degrees.

Adaptation goals are used to render adaptation policies. The information provided

in the goal model is then used to automatically devise the application’s architecture

(i.e., composition) and its adaptation capabilities. The goal model becomes a live,

runtime entity whose evolution helps govern the actual adaptation of the applica-

tion. The key elements of this approach are demonstrated by using a service-based

news provider as an exemplar application.

Chapter 11 presents a set of canonical business goals for organizations that can

be used to elicit domain-specific business goals from various stakeholders. These

business goals, once elicited, are used to derive quality attribute requirements for a

software system. The results are expressed in a common syntax that presents the

goal, the stakeholders for whom the goal applies, and the “pedigree” of the goal.

The authors present a body of knowledge about business goals and then discuss

several different possible engagement methods to use knowledge to elicit business

goals and their relation to software architectural requirements. They describe a new

Preface xv
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methodology to support this approach and describe their experiences applying it

with an Air Traffic Management unit of a major U.S aerospace firm.

Part 3 –Industrial Case Studies

The four chapters in this section present several industrial case studies of relating

software requirements and architecture. These range from developing next-genera-

tion Consumer Electronics devices with embedded software controllers, IT security

software, a travel booking system, and various large corporate systems.

Chapter 13 addresses the problems in designing consumer electronics (CE)

products where architectural description is required from an early stage in develop-

ment. The creation of this description is hampered by the lack of consensus on high-

level architectural concepts for the CE domain and the rate at which novel features

are added to products. This means that old descriptions cannot simply be reused.

This chapter describes both the development of a reference architecture that

addresses these problems and the process by which the requirements and architec-

ture are refined together. The reference architecture is independent of specific

functionality and is designed to be readily adopted. The architecture is informed

by information mined from previous developments and organized to be reusable in

different contexts. The integrity between the roles of requirements engineer and

architect, mediated through the reference architecture, is described and illustrated

with an example of integrating a new feature into a mobile phone.

Chapter 14 presents a view-based, model-driven approach for ensuring the

compliance ICT security issues in a business process of a large European company.

Compliance in service-architectures means complying with laws and regulations

applying to distributed software systems. The research question of this chapter is to

investigate whether the authors’ model-driven, view-based approach is appropriate

in the context of this domain. This example domain can easily be generalized to

many other problems of requirements that are hard to specify formally, such as com-

pliance requirements, in other business domains. To this end, the authors present

lessons learned as well metrics for measuring the achieved degree of separation of

concerns and reduced complexity via their approach.

Chapter 15 proposes an approach to artifact management in software engineer-

ing that uses an artifact matrix to structure the artifact space of a project along with

stakeholder viewpoints and realization levels. This matrix structure provides a basis

on top of which relationships between artifacts, such as consistency constraints,

traceability links and model transformations, can be defined. The management of

all project artifacts and their relationships supports collaboration across different

roles in the development process, change management and agile development

approaches. The authors’ approach is configurable to facilitate adaptation to differ-

ent development methods and processes. It provides a basis to develop and/or to

integrate generic tools that can flexibly support different methods. In particular,

it can be leveraged to improve the transition from requirements analysis to

xvi Preface
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architecture design. The development of a travel booking system is used as an

exemplar application domain.

Chapter 16 illustrates a set of proven practices as well as a conceptual methods

that help software engineers classify and prioritize requirements which then serve

as drivers for architecture design. The author claims that all design activities follow

the approach of piecemeal growth. Rather than try and react against this, they urge

in supporting this explicitly in the supporting requirements and architecting pro-

cesses. Similarly, a layered approach has been found to be necessary and most

effective when eliciting, documenting and managing these requirements and archi-

tectures. A method supporting this evolutionary growth of requirements and archi-

tecture is presented along with experiences of applying this approach on several

SIEMENS projects.

Part 4 – Emerging Issues

The three chapters in this section address some emerging issues in the domain of

relating software requirements and architecture. These issues include approaches to

synthesizing candidate architectures from formal requirements descriptions, explicit,

bi-directional constraint of requirements and architectural elements, and middleware-

based, economic-informed definition of requirements.

Chapter 18 studies the generation of candidate software architectures from

requirements using genetic algorithms. Architectural styles and patterns are used

as mutations to an initial architecture and several architectural heuristics as fitness

tests. The input for the genetic algorithm is a rudimentary architecture representing

a very basic functional decomposition of the system, obtained as a refinement from

use cases. This is augmented with specific modifiability requirements in the form of

allowable change scenarios. Using a fitness function tuned for desired weights of

simplicity, efficiency and modifiability, the technique produces a set of candidate

architectural styles and patterns that satisfy the requirements. The quality of the

produced architectures has been studied empirically by comparing generated archi-

tectures with ones produced by undergraduate students.

In Chap. 19 the authors claim that the relationship of a system’s requirements

and its architectural design is not a simple one. Previous thought has been that the

requirements drive the architecture and the architecture is designed in order to meet

requirements. In contrast, their experience is that a much more dynamic relation-

ship needs to be achieved between these key activities within the system design

lifecycle. This would then allow the architecture to constrain the requirements to an

achievable set of possibilities, frame the requirements by making their implications

on architecture and design clearer, and inspire new requirements from the capabil-

ities of the system’s architecture. The authors describe this rich interrelationship;

illustrate it with a case study drawn from their experience; and present some lessons

learned that they believe will be valuable for other software architects.

Preface xvii
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Chapter 20 discusses the problem of evolving non-functional requirements, their

stability implications and economic ramifications on the software architectures

induced by middleware. The authors look at the role of middleware in architecting

for non-functional requirements and their evolution trends. They advocate adjusting

requirements elicitation and management techniques to elicit not just the current

non-functional requirements, but also to assess the way in which they will develop

over the lifetime of the architecture and their economic ramifications. The range of

these possible future requirements may then inform the selection of distributed

components technologies, and subsequently the selection of application server

products. They describe an economics-driven approach, based on the real options

theory, which can assist in informing the selection of middleware to induce soft-

ware architectures in relation to the evolving non-functional requirements. They

review its application through a case study.

Current Challenges and Future Directions

We conclude this book with a chapter drawing conclusions from the preceding

15 chapters. We note many approaches adopt a goal-oriented paradigm to bridging

the gap between requirements and architecture. Similarly, many techniques and

tools attempt to address the problem of traceability between requirements elements

and architectural decisions. The advance of reference architectures, patterns, and

successful requirements models in many domains has assisted the development of

complex requirements and architectures.

We observe, as have some of the authors of chapters in this book, that the

waterfall software process heritage of “requirements followed by architecture”

has probably always been a degree of fallacy, and is probably more so with today’s

complex and evolving heterogeneous software systems. Instead, viewing software

requirements and software architecture as different viewpoints on the same problem

may be a more useful future direction. Appropriate representation of architectural

requirements and designs is still an area of emerging research and practice. This

includes decisions, knowledge, abstractions, evolution and implications, not only

technical but economic and social as well. To this end, some chapters and approaches

touch on the alignment of business processes and economic drivers with technical

requirements and architectural design decisions. While enterprise systems engineer-

ing has been an area of active practice and research for 30+ years, the relationship

between business drivers and technical solutions is still ripe for further enhancement.

J. Grundy, I. Mistrı́k, J. Hall, P. Avgeriou, and P. Lago
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Outi Räihä Department of Software Systems, Tampere University of Technology,

Tampere, Finland, outi.raiha@tut.fi

Maria Luisa Rodriguez Departamento de Lenguajes y Sistemas Informaticos,

Universidad de Granada, Granada 18071, Spain, mlra@ugr.es

Nick Rozanski Software Architect for a UK Investment Bank, London, United

Kingdom, nick@rozanski.org.uk

Guttorm Sindre Department of Computer and Information Science, Norwegian

University of Science and Technology, Trondheim, Norway, guttorm.sindre@idi.

ntnu.no

Contributors xxvii



www.manaraa.com

Michael Stal Siemens Corporate Technology, München, Germany and University

of Groningen, Groningen, The Netherlands, michael.stal@gmail.com

Tor Stalhane Department of Computer and Information Science, Norwegian

University of Science and Technology, Trondheim, Norway, tor.stalhane@idi.

ntnu.no

Zoe Stephenson Department of Computer Science, University of York, York

Y010 5DD, United Kingdom, zoe@cs.york.ac.uk

Nary Subramanian Department of Computer Science, University of Texas at

Tyler, Tyler, USA, Nary_Subramanian@UTTyler.edu

Sam Supakkul Department of Computer Science, University of Texas at Dallas,

Dallas, USA, ssupakkul@ieee.org

Antony Tang Swinburne University of Technology, Hawthorn, VIC, 3122,

Australia, ATang@groupwise.swin.edu.au

Huy Tran Vienna University of Technology, Information Systems Institute, Wien

1040, Austria, htran@infosys.tuwien.ac.at

Tim Trew Independent Embedded Software Architect and Software Specialist,

Horley, Surrey, RH6 7BX, United Kingdom, tiptrew@theiet.org, tim.trew@btin-

ternet.com

Hans van Vliet VU University Amsterdam, FEW, Computer Science, Amsterdam

1081 HV, The Netherlands, hans@cs.vu.nl

Hagen Völzer IBM Research – Zurich, Rüschlikon 8803, Switzerland, hvo@zur-
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Chapter 1

Introduction: Relating Requirements

and Architectures

J.G. Hall, J. Grundy, I. Mistrik, P. Lago, and P. Avgeriou

This book describes current understanding and use of the relationship between

software requirements and software architectures.

Requirements and architectures have risen to be preeminent as the basis of

modern software; their relationship one to the other is the basis of modern software

development process.

Their case was not always clear cut, and neither was their preeminence

guaranteed. Indeed, many tools and techniques have held the spotlight in software

development at various times, and we will discuss some of them in this chapter.

Now, however, it is clear that requirements and architectures are more than just

software development fashion: used together they have helped software developers

build the largest, most complex and flexible systems that exist today. They are

trusted, in the right hands, as the basis of efficiency, effectiveness and value

creation in most industries, in business and in the public sector. Many fast-moving

areas, such as manufacturing, chemical and electronic engineering, and finance owe

much of their success to their use of software!

It has been a virtuous spiral with the relationship between requirements and

architectures driving progress.

In the light of this, this chapter reflects on two strands to which the relationship

in question has made a defining contribution.

The first strand considers software developers’ management of growing code

complexity, a topic that lead to requirements and architectures, as well as

motivating the need to understand their relationship. Specifically, we look at

systems whose context of operation is well-known, bounded and stable. Examples

are taken from the familiar class of embedded systems – for instance, smart phone

operating systems, mechanical and chemical plant controllers, and cockpit and

engine management systems. As will be clear, embedded systems are by no

means unsophisticated, nor are the needs that such systems should fulfill simple:

some, such as air traffic control, contain complex hardware and exist within

complex socio-technical settings. Indeed, embedded system complexity has

grown with the confidence of the software developer in the complexity of the

problem that they can solve. For the purposes of this chapter, however, their

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_1, # Springer-Verlag Berlin Heidelberg 2011
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defining characteristic is that the context of the system is more or less stable so that

change that necessitates redevelopment is the exception rather than the norm. The

relationship between requirements and architectures for such systems is well-

known – it is recounted in Sect. 1.1 – and the uses, efficiency and effectiveness

of it is the topic of much fruitful research reported elsewhere in this book.

The second strand deals with systems for which a changing context is the norm,

and that are enabled by the flexibility – some might say the agility – of the software

development process that links requirements and architectures. It describes how

developers work within a volatile context – the domain of application – and with the

volatile requirements to be addressed within that domain.1 Software systems typical

of this class are those which underpin business processes in support of the enterprise

(whence our examples), with problem volatility being simply the volatility of the

business context and its needs. The relationship between requirements and

architectures in the face of volatility is less well explored and we look at the source

of some deficiencies in Sect. 1.2. New thinking, techniques and tools for improving

the efficiency and effectiveness of the treatment of volatility is the topic of other

leading-edge research reported elsewhere in this book.

Complexity and volatility are now known to be key developmental risk

indicators for software development (see, for instance, [1]). And it is the successful

treatment of complexity and volatility that places software requirements and soft-

ware architectures as preeminent in linking problem and solution domains: as they

are the key in the management of developmental risk, so most mainstream current

practice is based on their relationship.

This chapter is organised as follows: after this introduction, we consider the rise

of complexity in systems, providing an historic perspective that explains the current

importance of the relationship between requirements and architectures. We con-

sider next the rise of volatility in the light of the widely held critique of software

project failure. The last section makes two observations, and from them motivates

the continuing and future importance of the relationship between software

requirements and architectures.

1.1 The Rise of Complexity and Volatility

The themes of this chapter are the developmental management of complexity and of

volatility. Figure 1.1 (with Table 1.1) classifies various example systems according

to their characteristics. In the figure, software complexity (measured by the proxy of

lines of code2) is related to context volatility.

1We note that context and requirements may change independently; as they define the problem that

should be solved, we refer to problem volatility as indicative of these changes.
2The precise details of this relationship between complexity and lines of code have been subject to

many debates over the years; we do not replay them here.

2 J.G. Hall et al.
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The line labelled ‘System limit’ in the figure provides a bound based on the

observed laws on the growth of computing power. The most relevant (and most

widely known) is Moore’s observation that, essentially, computing power doubles

every 2 years [2].

Also overlaid on the figure are various ‘Developmental structuring mechanisms.’

These are referred to in the text, with the figure serving to delimit the approximate

scope of their applicability.

1.1.1 The Rise of Complexity

Manchester University housed the first stored program computer, the Small-Scale

Experimental Machine (SSEM in Fig. 1.1) – aka Baby – which ran its first program

on 21 June 1948. Baby’s first run was on a 17-line program3 that calculated:

Fig. 1.1 Relating of requirements and architectures, the rise of complexity an volatility

3See [3] for an intriguing reconstruction of that first program, together with a transcript of the notes

accompanying its design.

1 Introduction: Relating Requirements and Architectures 3
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[. . .] the highest factor of an integer. We selected this problem to program because it used

all seven instructions [in the SSEM instruction set]. It was of no mathematical significance,

but everybody understood it.

Tom Kilburn [4]

This trivial problem was, arguably, the beginning of the modern information

age. At that time, a simple software process was sufficient: the program above was

simply crafted by inspection of the problem and debugged until it was correct.

As higher problem complexity was encountered, code complexity increased.

One response to the need to manage higher code complexity was to provide richer

and richer structures within the programming languages in which to implement it.

High-level programming languages were developed to provide greater abstraction,

often with concepts from the problem domain allowing more complex code to

service more complex problems. There was a steady trend in sophistication leading

to the ‘fifth-generation languages’ (5GLs) and ‘domain-specific languages.’

However, in 1992, Perry and Wolfe [5] brought ‘elements,’ ‘forms’ and ‘ratio-

nale’ together and so placed the new topic of ‘software architecture’ at the heart of

code design. For, with them, Perry and Wolfe captured the repeated code and

thought structures used to code and to justify code. Shaw and Garlan’s book [6]

laid the groundwork for the development of software architecture as a discipline.

From our vantage point and by their lasting popularity and utility, architectures

(in their various guises) are the correct abstraction for software: they are program-

ming language independent and serve to structure large systems4 [7].

With architectures came a growing confidence in the extent to which complexity

could be handled and this led to a need for techniques and tools for managing

complex (if stable) problem domains.

Even though the term software engineering had been defined in 1968, coincident

with the rise of architectures was a growing realisation of the importance of an

engineering approach to software. The traditional engineering disciplines had

already been a rich source of ideas. The successful construction and manufacturing

process model has, for instance, inspired the early software process model. today

known as the Waterfall model, as illustrated in Fig. 1.2.

With architecture at heart of program design, software requirements began to be

explored through software requirements engineering (for instance, [9]) which

managed problem complexity through phases of elicitation, modelling, analysis,

validation and verification. As required by the waterfall, software requirements

engineering led from system requirements to software requirements specifications

on which architectural analysis could be performed.

Things did not go smoothly, however; already in 1970, Royce [8] had suggested

an amended model based on his extensive experience of the development of

embedded software ‘[. . .] for spacecraft mission planning, commanding and post-

flight analysis’ which had found it wanting. In particular, Royce saw the need to

4Their rise has also been coincident with a waning in the popularity of high-level programming

languages; always wary of cum hoc ergo propter hoc.
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iterate between software requirements and program design (and between program

design and testing): for software, the early stages of development could not always

be completed before commencement of the later stages.

It was Royce’s enhanced model, illustrated in Fig. 1.3, that inspired a generation

of software processes. And it is this model, and its many derivatives, that characterise

the massively successful relationship between requirements and architectures, at least

for embedded systems.

1.1.2 The Rise of Volatility

The waterfall model made one other assumption that is not true of software, which

is that a stable problem exists from which to begin development. It is the lifting of

this assumption that we explore in this section.

Of course, there were many early business uses of computers: a very early one

started in 1951 when the Lyons5 Electronic Office (LEO, [10]) was used for order

control and payroll administration. These early applications typically involved

scheduling, reporting and number crunching and, although they provided many

technical challenges to be solved that were complex for that time, what amounts to

Fig. 1.2 The traditional ‘Waterfall Model’ for software: a successful development process from

construction and manufacturing (Adapted from [8])

5J. Lyons and Co. A UK food manufacturer in the mid 20th century.
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first mover advantage [11] meant Lyons enjoyed a stable environment in which to

explore their business use of computers.

The wish for more sophisticated business computing use meant developers

dealing with the volatility of the business world. Any connection between the

informal organisational world and the (essentially) formal world of the computer

[12] must link two volatile targets: the world of enterprise and the world of

technology. As the move from real-world to formal world is unavoidable [12],

development must both initially cross and, as the needs exist in the real-world,

subsequently recross the boundary as development continues.

Due to volatility, the resulting relationship between requirements and

architectures is an order of magnitude more complex than for stable systems, and

the treatment of it offered by traditional techniques, such as those derived from

Royce’s processes, are increasingly seen as inadequate. Indeed, software develop-

ment in the face of such volatility is now recognised as one of the greatest

challenges it faces.

Unfortunately, only the magnitude of the challenge is understood fully: a

recently published study of 214 of large IT Projects6 [13] concluded that 23.8%

were cancelled before delivery, with 42% (of those that ran to completion)

overrunning in time and/or cost. According to the study, the total cost across the

European Union of Information Systems failure was estimated to be €142 billion

in 2004.

Fig. 1.3 Royce’s updated waterfall for embedded system development (Adapted from [8])

6Modally, the projects were in the €10–20 million range.
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With the best minds on the problem of developing software in volatile contexts,

exploration is in progress; indeed, a sizeable proportion of this book describes state

of the art thinking for this problem.

1.2 The Future of Requirements and Architectures

It is, of course, possible to imagine that the changes that are wrought to software

processes in response to volatile contexts will make redundant both requirements

and architectures, and so knowledge of their relationship. It may, for instance, be

that the need to treat volatility will lead back to high-level language development.

There are already some small trends that lead away from requirements and

architectures to self-structuring or multi-agent systems that, for instance, learn

what is needed and then supply it autonomously. Who knows from whence the

breakthrough will come!

There are, however, a number of observations of the systems we have considered

in this chapter that lead us, with some certainty, to the conclusion that requirements

and architectures will remain topics of importance for many, many years, and that

their relationship will remain the basis of mainstream, especially organisational,

software development.

Firstly, even if change is the norm, the scope of change in organisations is not the

whole organisational system. For instance, there are general organising principles –

the need for user to access a system, the need for the business processes conducted

by the organisation to be represented, the need for organisational data to be

captured and stored – which will remain for the foreseeable future and unless

organisations change from their current form to be unrecognisable. As such, their

representation in software will always be amenable to an architectural treatment

much like as today.

Secondly, most organisations lack embedded software expertise sufficient to

meet their own recognised software needs so that software development will,

typically, always be outsourced to specialist development organisations. As the

primary or driving need exists within the organisation, there is no alternative to

accessing the stakeholder within the commissioning organisation for understanding

their needs to develop the software intensive solution. As such, the need to capture

and process requirements between organisations will always be necessary.

One happy conclusion is that the relationship between requirements and

architectures is here to stay, and that the work of this book and that like it will

grow in relevance!

Acknowledgments The first author wishes to thank Lucia Rapanotti for her careful reading and

detailed critique of this chapter.
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Chapter 2

Theoretical Underpinnings and Reviews

J. Grundy, P. Lago, P. Avgeriou, J. Hall, and I. Mistrı́k

Requirements are fundamental to any engineered system. They capture the key

stakeholder functional needs, constraints on the operation of the system, and often

form a basis for contracting, testing and acceptance [1, 2]. Architecture captures the

structuring of software solutions, incorporating not just functional properties of a

system but design rationale, multi-layer abstractions and architectural knowledge

[3, 4]. One can not exist without the other. Requirements need to be realized in a

software system, described in essence by appropriate software architectures. Archi-

tecture must deliver on specified functional and non-functional requirements in

order for the software system to be at all useful.

A major challenge to requirements engineers and architects has been keeping

requirements and architecture consistent under change [5, 6]. Traditionally when

requirements change, architecture (and implementation derived from architecture)

must be updated. Likewise changes to the system architecture result in refining or

constraining the current requirements set. However, more recently the bi-directional

interaction between requirements and architecture changes; new software deve-

lopment processes such as agile, open source and outsourcing; new paradigms

such as service-orientation and self-organizing systems; and a need to constrain

requirements to what is feasible by e.g. rapidly emerging hardware technologies

such as smartphones and embedded sensor devices, has complicated this change

management process.

A further challenge to developers has been more effective traceability and

knowledge management in software architecture [7–9]. It has become recognized

that architectural knowledge management, including relationships to requirements,

is very complicated and challenging, particularly in large organizations and in

single-organisation multi-site, outsourcing and open source projects. Traceability

between documentation and source code has been a research topic for many years.

Tracing between requirements, architecture and code has become a key area to

advance management of the relationship between requirements and architecture.

Unfortunately recovering high value traceability links is not at all straightforward.

Different stakeholders usually require different support and management for both

traceability support and knowledge management.

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_2, # Springer-Verlag Berlin Heidelberg 2011
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A major research and practice trend has been to recognize that requirements

and architecture co-evolve in most systems. To this end, not only traceability

needs to be supported but recovery of architectures and requirements from legacy

systems [10]. Separating architectural concerns and knowledge has been implicitly

practiced for many years in these activities, needing to be supported by more

explicit approaches [11].

The three chapters in this part of the book identify a range of fundamental

themes around requirements engineering and software architecture. They help to

build a theoretic framework that will assist readers to understand both software

requirements engineering, software architecture and the diverse range of relation-

ships between the two. They address key themes across the domain of this

book including the need for appropriate change management processes, supporting

ontological reasoning about the meaning of requirements and architectural ele-

ments, and the need to be able to trace between requirements elements and archi-

tecture elements, at varying levels of detail.

Chapter 3, co-authored by Soo Ling Lim and Anthony Finkelstein, proposes

Change-oriented Requirements Engineering (CoRE). This is a new method to anti-

cipate change by separating requirements into layers that change at relatively

different rates. From the most stable to the most volatile, the authors identify

several layers that need to be accommodated. Some of these layers include

patterns, functional constraints, and business policies and rules. CoRE is empiri-

cally evaluated by applying it to a large-scale software system and then studying the

observed requirements changes from development to maintenance. The results of

this evaluation show that their approach accurately anticipates the relative volatility

of the requirements. It can thus help developers to manage both requirements

evolution but also derivative architectural changes.

Chapter 4, co-authored by Antony Tang, Peng Liang, Viktor Clerc and Hans van

Vliet, introduces a general-purpose ontology to address the problem of co-evolving

requirements and architecture descriptions of a software system. The authors

developed this ontology to address the issue of knowledge management in complex

software architecture domains, including supporting requirements capture and

relating requirements elements and architectural abstractions. They demonstrate

an implementation of a semantic wiki that supports traceability between elements in

a co-evolving requirements specifications and a corresponding architecture design.

They demonstrate their approach using a reuse scenario and a requirements change

scenario.

Chapter 5, co-authored by Inah Omoronyia, Guttorm Sindre, Stefan Biffl and

Tor Stålhane, investigates homogeneous and heterogeneous requirements traceabil-

ity networks. The authors synthesize these networks from a combination of event-

based traceability and call graphs. Both of these traces are harvested during the

running of a software project using appropriate tool support. These traceability

networks are used to help understand some of the architectural styles being observed

during work on a software project. The authors demonstrate the utility of their

traceability networks to monitor initial system decisions and identify bottlenecks in

an example project.

14 J. Grundy et al.
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Chapter 3

Anticipating Change in Requirements

Engineering

Soo Ling Lim and Anthony Finkelstein

Abstract Requirements change is inevitable in the development and maintenance of

software systems. One way to reduce the adverse impact of change is by anticipating

change during requirements elicitation, so that software architecture components that

are affected by the change are loosely coupled with the rest of the system. This

chapter proposes Change-oriented Requirements Engineering (CoRE), a method to

anticipate change by separating requirements into layers that change at relatively

different rates. From the most stable to the most volatile, the layers are: patterns,

functional constraints, non-functional constraints, and business policies and rules.

CoRE is empirically evaluated by applying it to a large-scale software system, and

then studying the requirements change from development to maintenance. Results

show that CoRE accurately anticipates the relative volatility of the requirements.

3.1 Introduction

Requirements change is inevitable in the development and maintenance of software

systems. As the environment and stakeholders’ needs continuously change, so must

the system, in order to continue meeting its intended purpose. Studies show that

requirements change accounts for a large part of the rework in development, in some

cases up to 85% [4, 16, 34]. As such, it is one of the top causes of project failure [30],

and often regarded as one of the most chronic problems in software development [14].

One way to reduce the impact of change is to anticipate change during

requirements elicitation. Identifying volatile requirements from the start enables

the design of the system such that architectural components that realise the

requirements are loosely coupled with the rest of the system [29, 33]. Then,

software changes to accommodate the requirements change are easier to imple-

ment, reducing the amount of rework.

Despite the centrality of change management in requirements engineering, the

area of change management lacks research [33]. Existing requirements engineering

methods regard change anticipation as a separate activity after documentation [29].

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_3, # Springer-Verlag Berlin Heidelberg 2011
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Without the notion of future changes, the documentation mixes stable and volatile

requirements, as the existing method section will show. Existing change anticipa-

tion approaches are guidelines that rely on domain experts and experienced

requirements engineers [29], who may be absent in some projects. Finally, existing

literature is almost entirely qualitative: there is no empirical study on the accuracy

of these guidelines in real projects.

To address these problems, this chapter proposes Change-oriented Requirements

Engineering (CoRE), an expert independent method to anticipate requirements

change. CoRE separates requirements into layers that change at relatively different

rates during requirements documentation. This informs architecture to separate

components that realise volatile requirements from components that realise stable

requirements. By doing so, software design and implementation prepares for change,

thus minimising the disruptive effect of changing requirements to the architecture.

CoRE is empirically evaluated on its accuracy in anticipating requirements

change, by first applying it to the access control system project at University

College London, and then studying the number of requirements changes in each

layer and the rate of change over a period of 3.5 years, from development to

maintenance. This study is one of the first empirical studies of requirements change

over a system’s lifecycle. The results show that CoRE accurately anticipates the

relative volatility of the requirements.

The rest of the chapter is organised as follows. Section 3.2 reviews existing

methods in requirements elicitation and change anticipation. Section 3.3 introduces

the idea behind CoRE. Section 3.4 describes CoRE and Sect. 3.5 evaluates it on a real

software project. Section 3.6 discusses the limitations of the study before concluding.

3.2 Existing Methods

3.2.1 Requirements Elicitation

In requirements elicitation, model-based techniques, such as use case and goal
modelling, use a specific model to structure their requirements, which often mixes

stable and volatile requirements.

Use case is one of the common practices for capturing the required behaviour of

a system [7, 13]. It models requirements as a sequence of interactions between the

system and the stakeholders or other systems, in relation to a particular goal. As

such, a use case can contain both stable and volatile requirements. An example use

case for an access control system is illustrated in Table 3.1. In the use case,

“displaying staff member details” in Step 1 is more stable than “sending photos

to the staff system” in Step 4, because the verification and retrieval of person

information is central to all access control systems, but providing photos to another

system is specific to that particular access control system.

18 S.L. Lim and A. Finkelstein
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Goalmodelling (e.g., KAOS [32] andGBRAM [1]) captures the intent of the system

as goals, which are incrementally refined into a goal-subgoal structure. High-level

goals are, in general, more stable than lower-level ones [33]. Nevertheless, goals at the

same level can have different volatility. For example, the goal “to maintain authorised

access” can be refined into two subgoals: “to verify cardholder access rights” and “to

match cardholder appearance with digital photo.” The second subgoal is more volatile

than the first as it is a capability required only in some access control systems.

3.2.2 Requirements Documentation

When it comes to documenting requirements, most projects follow standard

requirements templates. For example, the Volere Requirement Specification Tem-
plate by Robertson and Robertson [24] organises requirements into functional and

non-functional requirements, design constraints, and project constraints, drivers,

and issues. The example access control system has the functional requirement “the

access control system shall update person records on an hourly basis.” Within this

requirement, recording cardholder information is more stable than the frequency of

updates, which can be changed from an hour to 5 min when the organisation

requires its data to be more up-to-date.

A standard requirements template is the IEEE Recommended Practice for
Software Requirements Specification [11]. The template provides various options

(e.g., system mode, user class, object, feature) to organise requirements for differ-

ent types of systems. For example, the system mode option is for systems that

behave differently depending on mode of operation (e.g., training, normal, and

emergency), and the user class option is for systems that provide different functions

to different user classes. Nevertheless, none of these options organise requirements

by their volatility, which is useful for systems with volatile requirements, such as

software systems in the business domain [14].

3.2.3 Requirements Change Management

In requirements change management, one of the earliest approaches by Harker et al.

[10] classifies requirements into enduring requirements and volatile requirements.

Table 3.1 Use case: issue cards to staff

Step Action description

1. The card issuer validates the staff member’s identity and enters the identity into the system.

2. The system displays the staff member’s details.

3. The card issuer captures the staff member’s photo.

4. The system generates the access card and sends the photo to the staff system.

3 Anticipating Change in Requirements Engineering 19
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Volatile requirements include mutable requirements, emergent requirements, con-
sequential requirements, adaptive requirements, and migration requirements.
Harker et al.’s classification is adopted in later work by Sommerville, Kotonya,

and Sawyer [15, 28, 29]. Although the classification clearly separates stable

requirements from volatile ones, the relative volatility among the types of volatile

requirements is unknown. For example,mutable requirements change following the
environment in which the system is operating and emergent requirements emerge as

the system is designed and implemented. Without further guidelines, it is unclear

whether a mutable requirement is more volatile than an emergent requirement.

Later work provides guidelines to anticipate requirements change. Guidelines

from van Lamsweerde include: (1) stable features can be found in any contraction,

extension, and variation of the system; (2) assumptions and technology constraints

are more volatile than high-level goals; (3) non-functional constraints are more

volatile than functional requirements; and (4) requirements that come from decisions

among multiple options are more volatile [33]. Guidelines from Sommerville and

Sawyer [29] are: (1) identify requirements that set out desirable or essential properties

of the system because many different parts of the system may be affected by the

change; and (2) maintain a list of the most volatile requirements, and if possible,

predict likely changes to these requirements. The caveat with these guidelines is that

they require experienced requirements engineers or domain experts to identify

requirements that are likely to be volatile, and still, errors can occur [29].

To summarise, existing requirements elicitation methods lack the ability to

anticipate change. In addition, existing requirements templates do not separate

requirements by their volatility, and existing change management approaches are

expert dependent. In contrast, in the CoRE method proposed in this chapter,

requirements anticipation is part of the requirements modelling process and inde-

pendent of the person doing the analysis.

3.3 The Shearing Layers

CoRE adopts the concept of shearing layers from building architecture. This concept

was created by British architect Frank Duffy who refers to buildings as composed of

several layers of change [5]. The layers, from the most stable to most volatile, are site,

structure, skin, services, space plan, and “stuff” or furniture (Fig. 3.1). For example,

services (the wiring, plumbing, and heating) evolve faster than skin (the exterior

surface), which evolves faster than structure (the foundation). The concept was

elaborated by Brand [5], who observed that buildings that are more adaptable to

change allow the “slippage” of layers, such that faster layers are not obstructed by

slower ones. The concept is simple: designers avoid building furniture into the walls

because they expect tenants to move and change furniture frequently. They also avoid

solving a 5-min problem with a 50-year solution, and vice versa.

The shearing layer concept is based on the work of ecologists [22] and systems

theorists [26] that some processes in nature operate in different timescales and as a

20 S.L. Lim and A. Finkelstein
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result there is little or no exchange of energy or mass or information between them.

The concept has already been adopted in various areas in software engineering. In

software architecture, Foote and Yoder [9], and Mens and Galal [20] factored

artefacts that change at similar rates together. In human computer interaction,

Papantoniou et al. [23] proposed using the shearing layers to support evolving

design. In information systems design, Simmonds and Ing [27] proposed using rate

of change as the primary criteria for the separation of concerns.

Similar to the elements of a building, some requirements are more likely to

change; others are more likely to remain the same over time. The idea behind CoRE

is to separate requirements into shearing layers, with a clear demarcation between

parts that should change at different rates.

3.4 Change-oriented Requirements Engineering (CoRE)

3.4.1 The Shearing Layers of Requirements

CoRE separates requirements into four layers of different volatility and cause of

change. From the most stable to the most volatile, the layers are: patterns, func-

tional constraints, non-functional constraints, and business policies and rules

(Fig. 3.2). Knowledge about patterns and functional constraints can help design

and implement the system such that non-functional constraints, business policies

and rules can be changed without affecting the rest of the system.

3.4.1.1 Patterns

A pattern is the largest combined essential functionality in any variation of a software

component that achieves the same goal. As such, they remain unchanged over time

unless the goal is no longer needed. For example, the goal of an inventory system is

to maintain a stock of items for sale. It can be achieved by the Inventory

Fig. 3.1 The shearing layers

of architecture [5]
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pattern illustrated in Fig. 3.3 (a) with functionalities such as making reservations,

adding and finding products. These functionalities have existed long before software

systems and are likely to remain unchanged. Different patterns can be found in

different domains, e.g., patterns in the medical domain revolve around patients,

doctors, patient records [28] and patterns in the business domain revolve around

products, customers, inventory [2]. In the business domain, Arlow and Neustadt [2]

developed a set of patterns which they named enterprise archetypes as the patterns

are universal and pervasive in enterprises1. Their catalogue of patterns consists of

various business related pattern, including the ones in Fig. 3.3.

3.4.1.2 Functional Constraints

Patterns allow freedom for different instantiations of software components achieving

the same goals. In contrast, functional constraints are specific requirements on the

behaviour of the system that limit the acceptable instantiations. These constraints are

needed to support the stakeholders in their tasks, hence remain unchanged unless the

stakeholders change their way of working. For example, an access control system’s

main goal is to provide access control. The pattern assigned to this goal is the

PartyAuthentication archetype that represents an agreed and trusted

a b

Get identifier
Get person name
Get addresses
Get gender
Get date of birth (optional)
Get other names (optional)
Get ethnicity (optional)
Get body metrics (optional)

Person

Add inventory entry
Remove inventory entry
Get inventory entry
Find inventory entry
Get product types
Make reservation
Cancel reservation
Get reservations
Find reservation

Inventory

Fig. 3.3 Example patterns:

(a) Inventory pattern

(b) Person pattern [2]

Patterns

Functional 
constraints

Non-functional 
constraints

Business policies 
and rules

Fig. 3.2 The shearing layers

of requirements. The layers

with more arrows are more

volatile

1From this point on, the word “archetype” is used when referring specifically to the patterns by

Arlow and Neustadt [2].
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way to confirm that a party is who they say they are [2]. A functional constraint on the

achievement of this goal is that the system must display the digital photo of the

cardholder when the card is scanned, in order to allow security guards to do visual

checks.

3.4.1.3 Non-Functional Constraints

A non-functional constraint is a restriction on the quality characteristics of the

software component, such as its usability, and reliability [6]. For example, the ISO/

IEC Software Product Quality standard [12] identifies non-functional constraints as

a set of characteristics (e.g., reliability) with sub-characteristics (e.g., maturity, fault

tolerance) and their measurable criteria (e.g., mean time between failures). Changes

in non-functional constraints are independent of the functionality of the system and

occur when the component can no longer meet increasing quality expectation. For

example, in an access control system, a person’s information has to be up-to-date

within an hour of modification. The constraint remains unchanged until the system

can no longer support the increasing student load, and a faster service is needed.

3.4.1.4 Business Policies and Rules

A business policy is an instruction that provides broad governance or guidance to

the enterprise [3, 21]. A business rule is a specific implementation of the business

policies [3, 21]. Policies and rules are an essential source of requirements specific to

the enterprise the system operates in [3, 25]. They are the most volatile [3], as they

are related to how the enterprise decides to react to changes in the environment [21].

For example, a university deploying the access control system may have the

business policy: access rights for students should correspond to their course
duration. The business rule based on the policy is: a student’s access rights should
expire 6 months after their expected course end date. For better security, the

expiration date can be shortened from 6 months to 3 months after the students’

course end dates.

3.4.2 CoRE Method

CoRE is based on goal modelling methods [8, 35]. To separate requirements into

the shearing layers, CoRE applies five steps to the goals elicited from stakeholders

(Fig. 3.4). The access control system example for a university is used as a running

example to demonstrate the method.

Step 1: Assign patterns to goals. CoRE starts by checking if there is a pattern for

each goal. A pattern can be assigned to a goal if and only if the operation(s) in the

pattern is capable of achieving the goal. There are two ways for this to happen. First,
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the goal is a direct match to a functionality in the pattern. For example, the goal of

searching for a person by name can be directly mapped to the functionality to find
a person by ID or name in the PartyManager archetype [2]. Second, the

goal can be refined into subgoals that form a subset of the operations in the pattern.

For example, the goal to manage people information centrally can be refined into

subgoals such as to add or delete a person, and to find a person by ID or name.
These subgoals are a subset of the operations in the PartyManager arche-

type. If no patterns can be assigned to the goal, proceed to Step 2 with the goal.

Otherwise, proceed to Step 3.

Step 2: Refine goals. This step refines high-level goals into subgoals and repeats
Step 1 for each subgoal. To refine a goal, the KAOS goal refinement strategy [8] is

used where a goal is refined if achieving a subgoal and possibly other subgoals is

among the alternative ways of achieving the goal. For a complete refinement, the

subgoals must meet two conditions: (1) they must be distinct and disjoint; and (2)

together they must reach the target condition in the parent goal. For example, the

goal to control access to university buildings and resources is refined into three

subgoals: to maintain up-to-date and accurate person information, assign access
rights to staff, students, and visitors, and verify the identity of a person requesting
access. If these three subgoals are met, then their parent goal is met.

As the refinement aims towards mapping the subgoals to archetypes, the patterns

are used to guide the refinement. For example, the leaf goal2 to maintain up-to-date
and accurate person information is partly met by the PartyManager arche-

type that manages a collection of people. Hence, the leaf goal is refined into two

subgoals: to manage people information centrally, and to automate entries and
updates of person information. A goal cannot be refined if there are no patterns for

its subgoals even if it is refined. For example, the goal to assign access rights to
staff, students, and visitors has no matching patterns as access rights are business

specific. In that case, proceed to Step 4.

Step 3: Identify functional constraints. For each pattern that is assigned to

a goal, this step identifies functional constraints on the achievement of the goal.

This involves asking users of the system about the tasks they depend on the system

Fig. 3.4 The five steps in CoRE

2A leaf goal is a goal without subgoals.
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to carry out, also known as task dependency in i* [35]. These tasks should be

significant enough to warrant attention. For example, one of the security guard’s

task is to compare the cardholders’ appearance with their digital photos as they

scan their cards. This feature constrains acceptable implementations of the

PartyAuthentication archetype to those that enable visual checks.

Step 4: Identify business policies and rules. The goals that cannot be further

refined are assigned to business policies and rules. This involves searching for

policies and rules in the organisation that support the achievement of the goal [21].

For example, the goal to assign access rights to staff, students, and visitors is

supported by UCL access policies for these user categories. These policies form

the basis for access rules that specify the buildings and access times for each of

these user categories and their subcategories. For example, undergraduates and

postgraduates have different access rights to university resources.

Step 5: Identify non-functional constraints. The final step involves identifying

non-functional constraints for all the goals. If a goal is annotated with a non-

functional constraint, all its subgoals are also subjected to the same constraint. As

such, to avoid annotating a goal and its subgoal with the same constraint, higher-level

goals are considered first. For example, the access control system takes people data

from other UCL systems, such as the student system and human resource system.

As such, for the goal to maintain up-to-date and accurate person information,
these systems impose data compatibility constraints on the access control system.

The output of the CoRE method is a list of requirements that are separated into

the four shearing layers. A visual representation of its output is illustrated in

Fig. 3.5. This representation is adopted from the KAOS [8] and i* methods [35].

For example, the goal refinement link means that the three subgoals should together

achieve the parent goal, and the means-end link means that the element (functional

constraint, non-functional constraint, or pattern) is a means to achieve the goal.

To maintain up-to-date
and accurate person 

information

To control access to 
university buildings and 

resources

Means-end link

Goal refinement
link

Pattern

Goal

Legend

Store, print and export
person photo

Display person photo 
when card scanned

Functional 
constraint

Non-functional 
constraint

AvailabilityCompatibility

To verify the identity of 
a person requesting 

access

To assign access rights 
to staff, students, and 

visitors *

To automate entries 
and updates of person 

information *

PartyManager

PartyAuthentication

* Goals without patterns are linked to their related business policies and rules..

To manage people 
information centrally

Fig. 3.5 Partial CoRE output for the university access control system
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3.5 Evaluation

CoRE’s goal is to separate requirements into layers that change at different rates.

The evaluation asks if CoRE can be used to separate requirements into the shearing

layers, and if it accurately anticipates the volatility of each shearing layer. The

access control system project in University College London is used as a case study

to evaluate CoRE. First, CoRE is used to model the initial requirements for the

project. Then, the requirements change in the system is recorded over a period of

3.5 years, from the development of the system to the current date after the system is

deployed. The result is used to find out the volatility for each layer and when

changes in each layer occur in the system lifecycle.

3.5.1 The RALIC Project

RALIC (Replacement Access, Library and ID Card) was the access control system
project at University College London (UCL). RALIC was initiated to replace the

existing access control systems at UCL, and consolidate the new system with

identification, library access and borrowing. RALIC was a combination of devel-

opment and customisation of an off-the-shelf system. The objectives of RALIC

included replacing existing access card readers, printing reliable access cards,

managing cardholder information, providing access control, and automating the

provision and suspension of access and library borrowing rights.

RALIC was selected as the case study to evaluate CoRE for the following

reasons. First, the stakeholders and project documentation were accessible as the

system was developed, deployed, and maintained at UCL. Second, RALIC was a

well-documented project: the initial requirements and subsequent changes were

well-documented. Third, the system development spanned over 2 years and the

system has been deployed for more than 2 years, providing sufficient time to study

change during development as well as maintenance. Finally, RALIC was a large-

scale project with many stakeholders [19] in a changing environment, providing

sufficient data in terms of requirements and their changes to validate CoRE.

3.5.2 Applying CoRE to RALIC

The CoRE method was used to separate the requirements for the RALIC project

into the shearing layers. The initial requirements model was built using the

requirements documentation signed off by the client as the baseline. The initial

requirements model for RALIC consists of 26 elements from the CoRE layers: 3

patterns, 5 functional constraints, 4 non-functional constraints, 5 business policies,

and 9 business rules.
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To study requirements change, modifications to the requirements documentation

after the baseline are considered as a change. There are three types of change:

• Addition: a requirement is introduced after sign-off.

• Deletion: an existing requirement is removed.

• Modification: an existing requirement is modified due to changes in stakeholder

needs. Corrections, clarifications, and improvements to the documentation are

not considered as changes.

As RALIC was an extremely well-documented project, requirements change can

be studied retrospectively. During the project, the team members met fortnightly to

update their progress and make decisions. All discussions were documented in

detail in the meeting minutes as illustrated in Fig. 3.6, by an external project support

to increase the objectiveness of the documentation. As such, studying the minutes

provided an in-depth understanding of the project, its progress, requirements

changes, and their rationale.

RALIC used a semi-formal change management process. During development,

minor changes were directly reflected in the documentation. Changes requiring

further discussions were raised in team meetings and reported to the project board.

Major changes required board approval. Meeting discussion about changes and

their outcome (accepted, postponed, or rejected) were documented in the minutes.

During maintenance, team meetings ceased. The maintenance team recorded

change requests in a workplan and as action items in a change management tool.

The following procedure was used to record changes. All project documentation

related to requirements, such as specifications, workplans, team and board meeting

minutes, were studied, as changes may be dispersed in different locations. Care was

taken not to consider the same changes more than once. Repeated documentation of

Fig. 3.6 An excerpt of RALIC’s meeting minutes on card design. Names have been anonymised

for reasons of privacy
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the same changes occurred because changes discussed in team meetings can be

subsequently reported in board meetings, reflected in functional specification,

cascaded into technical specification and finally into workplans. Interviews were

also conducted with the project team to understand the project context, clarify

uncertainties or ambiguities in the documentation, and verify the findings.

Some statements extracted from the documentation belong tomore than one CoRE

layer. For example, the statement “for identification and access control using a single

combined card” consists of two patterns (i.e., Person and PartyAuthen-
tication) and a functional constraint (i.e., combined card). In such cases, the

statements are split into their respective CoRE layers.

Although the difference between pattern, functional constraint, and non-functional

constraint is clear cut, policies and rules can sometimes be difficult to distinguish.

This is because high-level policies can be composed of several lower-level policies

[3, 21]. For example, the statement “Access Systems and Library staff shall require

leaver reports to identify people who will be leaving on a particular day” is a policy

rather than a rule, because it describes the purpose of the leaver reports but not how

the reports should be generated. Sometimes, a statement can consist of both rules and

policies. For example, “HR has changed the staff organisation structure; changes

were made from level 60 to 65.” Interviews with the stakeholders revealed that UCL

has structured the departments for two faculties from a two tier to a three tier

hierarchy. This is a UCL policy change, which has affected the specific rule for

RALIC, which is to display department titles from level 65 of the hierarchy onwards.

Each change was recorded by the date it was approved, a description, the type of

change, and its CoRE layer (or N/A if it does not belong to any layer). Table 3.2

illustrates the change records, where the type of change is abbreviated as A for

addition, M for modification, and D for deletion, and the CoRE layers are

abbreviated as P for pattern, FC for functional constraint, NFC for non-functional

constraint, BP for business policies, BR for business rules, and N/A if it does not

belong to any layer. There were a total of 97 changes and all requirements can be

exclusively classified into one of the four layers.

3.5.3 Layer Volatility

To evaluate if CoRE accurately anticipates the volatility of each shearing layer, the

change records for RALIC (Table 3.2) is used to calculate each layer’s volatility.

The volatility of a layer is the total number of requirements changes divided by the

initial number of requirements in the layer. The volatility ratio formula from Stark

et al. [31] is used Eq (3.1).

volatility ¼ Added þ Deleted þModified

Total
; (3.1)
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where Added is the number of added requirements, Deleted is the number of deleted

requirements, Modified is the number of modified requirements, and Total is the

total number of initial requirements for the system. Volatility is greater than 1 when

there are more changes than initial requirements.

Using Eq. 3.1 to calculate the volatility for each layer enables the comparison of

their relative volatility. As expected, patterns are the most stable, with no changes

over 3.5 years. This is followed by functional constraints with a volatility ratio of

0.6, non-functional constraints with a volatility ratio of 2.0, and business policies

and rules with a volatility ratio of 6.4. The volatility ratio between each layer is also

significantly different, showing a clear boundary between the layers. Business

policies and business rules have similar volatility when considered separately:

policies have a volatility ratio of 6.40 and rules 6.44.

3.5.4 Timing of Change

The volatility ratio indicates the overall volatility of a layer. To understand when
the changes occur, the number of quarterly changes for each layer is plotted over the

duration of the requirements change study, as illustrated in Fig. 3.7.

Table 3.2 Partial change records

Date Description Type Layer

6 Oct 05 The frequency of data import from other systems is 1 h (changed

from 2 h).

M NFC

6 Oct 05 The access rights for students expire 3 months after their expected

course end date (changed from 6 months).

M BR

18 Oct 05 End date from the staff and visitor systems and student status from

the student system is used to determine whether a person is an

active cardholder.

A BR

16 Nov 05 Expired cards must be periodically deleted. A BP

30 Nov 05 Access card printer should be able to print security logos within

the protective coating.

A FC

8 May 06 The highest level department name at departmental level 60

should be printed on the card.

A BR

17 Jan 07 The frequency of data import from other systems is 2 min

(changed from 5 min).

M NFC

2 Apr 07 Replace existing library access control system that uses barcode

with the new access control system.

D BP

1 Jul 08 Programme code and name, route code and name, and faculty

name from the student system is used to determined their

access on the basis of courses.

A BR

15 Aug 08 The highest level department name at departmental level 65

should be printed on the card (changed from 60).

M BR

1 Jan 09 Introduce access control policies to the Malet Place Engineering

Building.

A BP
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The quarter Oct–Dec 05 has the highest number of changes for functional

constraints, non-functional constraints, business policies and rules because the

requirements elicitation and documentation were still in progress. The project

board had signed off the high-level requirements, but the details surrounding access

rights and card processing were still under progress. Many of the changes were due

to better understanding of the project and to improve the completeness of the

requirements.

Consistent with the existing literature (e.g., [7]), missing requirements surfaced

from change requests after the system was deployed. The system went live first for

new staff in May 06 and then for the whole of UCL in March 07. Each time it went

live, the number of requirements change increased in the following quarters.

A rise in policy change in quarters Oct–Dec 05 and Jan–Mar 07 was followed by

a rise in rule change in the following quarters, because business rules are based on

business policies. As more than one rule can be based on the same policy, the

number of changes in rules is naturally higher than that of policies. Nevertheless,

after the system went live, policy changes did not always cascade into rule changes.

For example, application of the access control policy to new buildings required only

the reapplication of existing rules.

Interestingly, the quarterly changes for business rules resemble an inverse

exponential function, as the number of changes was initially large but rapidly

decreased. In contrast, the quarterly changes for business policies shows signs of

continuous change into the future. Rules suffered from a high number of changes to

start with, as the various UCL divisions were still formulating and modifying the

rules for the new access control system. After the system went live, the changes

reduced to one per quarter for three quarters, and none thereafter. One exception is
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Fig. 3.7 Quarterly requirements changes for each layer
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in quarter Jul–Sep 08, where UCL faculty restructuring had caused the business

processes to change, which affected the rules. Nevertheless, these changes were

due to the environment of the system rather than missing requirements.

3.5.5 Implications

CoRE produces requirements models that are adequate without unnecessary details

because leaf goals are either mapped to archetypes, which are the essence of the

system, or to business policies and rules, ensuring that business specific require-

ments are supported by business reasons. CoRE does not rely on domain experts

because the archetypes capture requirements that are pervasive in the domain. The

requirements models are complete and pertinent because all the requirements in

RALIC can be classified into the four CoRE layers. Also, RALIC stakeholders

could readily provide feedback on CoRE models (e.g., Fig. 3.5), showing that the

model is easy to understand.

As CoRE is based on goal modelling, it inherits their multi-level, open and

evolvable, and traceable features. CoRE captures the system at different levels of

abstraction and precision to enable stepwise elaboration and validation. The AND/

OR refinements enables the documentation and consideration of alternative options.

As CoRE separates requirements based on their relative volatility, most changes

occur in business policies and rules. The rationale of a requirement is traceable

by traversing up the goal tree. The source of a requirement can be traced to the

stakeholder who defined the goal leading to the requirement.

Finally, CoRE externalises volatile business policies and rules. As such, the

system can be designed such that software architecture components that implement

these volatile requirements are loosely coupled with the rest of the system. For

example, in service-oriented architecture, these components can be implemented

such that changes in business policies are reflected in the system as configuration

changes, and changes in business rules are reflected as changes in service com-

position [18]. This minimises the disruptive effect of changing requirements on

the architecture.

3.6 Future Work

The study is based on a single project, hence there must be some caution in

generalising the results to other projects, organisations, and domains. Also, the

study assumed that all requirements and all changes are documented. Future work

should evaluate CoRE on projects from different domains, and in a forward looking

manner, i.e., anticipate the change and see if it happens. As RALIC is a business

system, enterprise archetype patterns were used. Future work should investigate

the use of software patterns in other domains, such as manufacturing or medical
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domains. Finally, future work should also investigate the extent of CoRE’s support

for requirements engineers who are less experienced.

The requirements changes that CoRE anticipates are limited to those caused by

the business environment and stakeholder needs. But requirements changes can be

influenced by other factors. For example, some requirements may be more volatile

than others because they cost less to change. In addition, CoRE does not consider

changes due to corrections, improvements, adaptations or uncertainties. Future

work should consider a richer model that accounts for these possibilities, as well

as provide guidance for managing volatile requirements.

CoRE anticipates change at the level of a shearing layer. But among the elements

in the same layer, it is unclear which is more volatile. For example, using CoRE,

business rules are more volatile than functional constraints, but it is unclear which

rules are more likely to change. Future work should explore a predictive model that

can anticipate individual requirements change and the timing of the change. This

could be done by learning from various attributes for each requirement such as

the number of discussions about the requirement, the stakeholders involved in the

discussion and their influence in the project, and the importance of the requirement

to the stakeholders. Much of these data for RALIC have been gathered in previous

work [17].

3.7 Conclusion

This chapter has described CoRE, a novel expert independent method that classifies

requirements into layers that change at different rates. The empirical results show

that CoRE accurately anticipates the volatility of each layer. From the most stable

to the most volatile, the layers are patterns, functional constraints, non-functional

constraints, and business policies and rules.

CoRE is a simple but reliable method to anticipate change. CoRE has been

used in the Software Database project3 to build a UCL wide software inventory

system. Feedback from the project team revealed that CoRE helped the team

better structure their requirements, and gave them an insight of requirements that

were likely to change. As a result, their design and implementation prepared for

future changes, thus minimising the disruptive effect of changing requirements to

their architecture.
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Chapter 4

Traceability in the Co-evolution of Architectural

Requirements and Design

Antony Tang, Peng Liang, Viktor Clerc, and Hans van Vliet

Abstract Requirements and architectural design specifications can be conflicting

and inconsistent, especially during the design period when requirements and architec-

tural design are co-evolving. One reason is that stakeholders do not have up-to-date

knowledge of each other’s work to fully understand potential conflicts and incon-

sistencies. Specifications are often documented in a natural language, which also

makes it difficult for tracing related information automatically. In this chapter,

we introduce a general-purpose ontology that we have developed to address this

problem. We demonstrate an implementation of semantic wiki that supports trace-

ability of co-evolving requirements specifications and architecture design.

4.1 Introduction

Let us begin by considering a typical software architecting scenario:

A team of business analysts and users work on a new software system in an organization. The

business analysts and users document the business goals, use-case scenarios, system and data

requirements in a requirements document. The team of software and system architects studies

this document, which is in a draft version, and they start to create some designs. The

architects realize that more information from the stakeholders is required, and they must

validate the usability requirements with the operators to ensure they understand the efficiency

requirements of the user interface; they also realize that they must understand the data

retention and storage requirements from the business managers; finally, they have to analyze

the performance requirements of the system. They find that the performance of retrieving data

is slow and that hinders the data entry task. They have to discuss and resolve this issue

together with the business analysts who represent the business operation unit. In the mean-

time, the business analysts have decided to add new functionalities to the system . . .

In this scenario, many people are involved in the development of the system, and

the knowledge used in the development is discovered incrementally over time.

Common phenomena such as this occur every day in software development. Three

problematic situations often arise that lead to knowledge communication issues in

software design.
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The first problematic situation is that knowledge is distributed. System develop-

ment always involves a multitude of stakeholders and each stakeholder possesses

only partial knowledge about some aspects of a system. In this case, business users

only know what they want, but they do not know how to make it work, and vice

versa for the architects. In general, requirements are specified by many stakeholders

such as end-users, business managers, management teams, and technology

specialists. Architecture designs, in turn, are specified by architects, application

software designers, database specialists, networking specialists, security specialists,

and so on. As a result, the requirements and architectural design specifications that

are created by different stakeholders are often conflicting and inconsistent.

Secondly, information is imperfect. Not all information about requirements and

architecture design is explicitly documented and retrievable. The requirements and

architecture design are for the most part recorded in specifications but some

knowledge will remain only in the heads of those who are deeply involved in the

software development project. The vast number of requirements and design entities

in large-scale systems can potentially hide requirements and design conflicts. These

conflicts can remain undetected until the relevant design concerns are considered in

certain views and with certain scenarios. Additionally, not all relationships between

the design entities and the requirements statements are captured sufficiently in the

specifications to allow stakeholders to detect potential conflicts.

Thirdly, requirements and architecture design can co-evolve over time.
Requirements and insight into how these requirements may be implemented evolve

over time through exploration, negotiation, and decision-making by many people.

In the scenario given at the beginning of this chapter, architects understand the

performance constraints in data retrieval that the business users have no knowledge

of. Because of the performance constraint, compromises in the design and require-

ments will have to be made. Sometimes, requirement decisions that have profound

impact on the architecture design can be made before the start of the design acti-

vities. In this way, requirements documents can be signed off before architecture

design commences. However, agreeing on these important requirement decisions

is not always possible.

Owing to these issues, it is obvious that the development of requirements

specifications and the architectural design specifications would overlap in time,

implying that these specifications can co-evolve simultaneously. In order to allow

stakeholders to communicate the potential impacts and conflicts between require-

ments and the architectural design during their co-evolution, different stakeholders

must be able to trace between requirements and design to assess the viability of the

solution during this process.

Traceability between requirements and design has been studied previously

[1–4]. These methods use static trace links to trace different types of requirements,

design, and code objects. They employ different ways to construct traces. However,

these methods suffer from two issues: (a) the need to laboriously establish the trace

links and maintain them as a system evolves; (b) they do not support on-going

design activities. An improvement to these methods is to provide dynamic tracing at

different levels of design abstraction. An example of this dynamism is a scoped
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approach to the traceability of product line and product levels [5]. However,

this approach is not suitable for general purpose traceability of requirements to

architecture design.

In this research, we investigate how requirements and design relationships can

become traceable when requirements and design objects are both incomplete and

evolving simultaneously, and the static trace links used by conventional traceability

methods are insufficient and out-of-date. Our work provides a general ontological

model to support the traceability of co-evolving architectural requirements and

design. Based on this ontology, we have applied semantic wikis to support trace-

ability and reasoning in requirements development and architecture design.

This remaining of this chapter is organized as follows. Section 4.2 describes

the issues on current traceability management from requirements to architecture

design. Section 4.3 presents the traceability use cases for co-evolving architec-

ture requirements and design with a metamodel that supports this traceability.

Section 4.4 introduces the implementation of Software Engineering Wiki (SE-

Wiki), a prototype tool that supports the dynamic traceability with an underlying

ontology based on the traceability metamodel. Section 4.5 presents three concrete

examples of using SE-Wiki to perform the traceability use cases. We conclude this

chapter in Section 4.6.

4.2 Issues in Finding the Right Information

Requirements traceability is the ability to describe and follow the life of require-

ments [1]. Ideally, such traceability would enable architects and designers to find

all relevant requirements and design concerns for a particular aspect of software

and system design, and it would enable users and business analysts to find out

how requirements are satisfied. A survey of a number of systems by Ramesh

and Jarke [2] indicates that requirements, design, and implementation ought to be

traceable to ensure continued alignment between stakeholder requirements and

various outputs of the system development process. The IEEE standards recom-

mend that requirements should be allocated, or traced, to software and hardware

items [6, 7].

On the other hand, [1] distinguishes two types of traceability: pre-requirements
specification and post-requirements specification. The difference between these

two traceability types lies in when requirements are specified in a document.

With the emergence of agile software development and the use of architecture

frameworks, the process of requirements specification and design becomes more

iterative. As a result, the boundary between pre- and post-requirement traceability

is harder to define because of the evolving nature of requirements specification

activity.

In this section, we examine the knowledge that is required to be traced, the

challenges of using conventional requirements traceability methods that are based

on static information, and compare that with an environment where information
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changes rapidly and the capabilities to trace such dynamic requirements infor-

mation must improve.

4.2.1 Architectural Knowledge Management and Traceability

Architectural knowledge is the integrated representation of the software architec-

ture of a software-intensive system (or a family of systems), the architectural design

decisions, and the external context/environment. For facilitating better design

decision-making, architects require “just-in-time” knowledge [8]. Just-in-time

knowledge refers to the right architectural knowledge, provided to the right person,

at any given point in time.

Architectural knowledge should capture not just the outcomes of a design but

also the major architectural decisions that led to it [9]. Capturing the architectural

decisions facilitates a better decision-making process in shorter time, saving rework

and improving the quality of the architecture [10, 11]. Hence, it is important to not

only trace to the resulting architecture design, but also to the decisions, including

their rationale, that led to that design.

Sound management of architectural knowledge can help in providing just-in-

time knowledge by building upon two important knowledge management strategies

[12]. Personalisation implies providing knowledge that urges the knowledge

workers to interact with each other, by making known who possesses certain

knowledge. Codification, on the other hand, focuses on identifying, eliciting,

and storing the knowledge in e.g., repositories.

A hybrid strategy that uses both personalisation and codification aspects can be

beneficial to sound architectural knowledge management, especially in the iterative

process of architecting. When tracing back and forth between requirements and

architecture, architects need specific support with adequate information relevant

for addressing the design issues at hand. Hence, the proposed traceability method

using semantic wikis is aligned with the current knowledge management strategy.

4.2.2 Requirements and Architecture Design Traceability

During the development life cycle, architects and designers typically use specifications

of business requirements, functional requirements, and architecture design. Traceabil-

ity across these artifacts is typically established as a static relationship between entities.

An example would be to cross-reference requirement R13.4 which is realized by

module M_comm(). It is argued by [3] that relating these pieces of information helps

the designers tomaintain the system effectively and accurately, and it can lead to better

quality assurance, change management, and software maintenance. There are different

ways in which such traceability between requirements and architecture design can be
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achieved. Firstly, use a traceability matrix to associate requirements to design entities

in a document [13]. This is typically implemented as a table or a spreadsheet.

Traceability is achieved by finding the labels in a matrix and looking up the relevant

sections of the documents. Secondly, use a graphical tool in which requirements and

design entities are represented as nodes and the relationships between them as arcs.

Traceability is achieved by traversing the graph. Examples of such a system are

provided by [2, 14]. Thirdly, use some keyword- and metadata-based requirements

management tools. The metadata contains relationships such as requirement X is

realized by component Y. The user would, through the tool, access the traceable

components. Examples of such systems are DOORS [15], RequisitePro [16],

and [17]. Fourthly, automatically generate trace relationships through supporting infor-

mation such as source code [4], or requirements documents [18, 19].

Traceability is needed not only for maintenance purpose when all the designs are

complete and the system has been deployed; static traceability methods can work

well under this circumstance. Traceability is also needed when a system design is in

progress, and the relationships between requirements and design entities are still

fluid. The following scenarios are typical examples:

• When multiple stakeholders make changes to the requirements and the architec-

ture design simultaneously during development

• Stakeholders are working from different locations and they cannot communicate

proposed changes and ideas to the relevant parties instantly

• Requirements decisions or architectural decisions may have mutual impact on

each other, even conflict with each other, but these impacts are not obvious when

the two parties do not relate them

Under these circumstances, static traceability methods would fail because it is

difficult to establish comprehensive traceability links in a documentation-based

environment. In real-life, potential issues such as these are discussed and resolved

in reviews and meetings. Such a solution requires good communication and man-

agement practice for it to work. A solution was proposed to use events to notify

subscribers who are interested in changes to specific requirements [20]. This,

however, would not serve for situations in which many new requirements and

designs are being created.

In order to address this issue, this chapter outlines the use of a query-based

traceability method to allow architects and requirements engineers to find relevant

information in documents. This method applies a software engineering ontology to

requirements and architecture design documentation.

4.2.3 Applying Semantic Wikis in Software Engineering

Software development is from one perspective a social collaborative activity.

It involves stakeholders (e.g., customers, requirements engineers, architects,
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programmers) closely working together and communicating to elicit requirements

and to create the design and the resulting software product. This collaboration

becomes more challenging when an increasing number of projects are conducted in

geographically distributed environments – Global Software Development (GSD)

becoming a norm. In this context, many CSCW (Computer Supported Collabora-

tive Work) methods and related tools have been applied in software engineering to

promote communication and collaboration in software development [21], but the

steep learning-curve and the lack of openness of these methods and tools inhibit

their application in industrial projects.

Semantic wikis combine wiki properties, such as ease of use, open collaboration,

and linking, with Semantic Web technologies, such as structured content, know-

ledge models in the form of ontologies, and reasoning support based on formal

ontologies with reasoning rules [22, 23]. As such, a semantic wiki intends to extend

wiki flexibility by allowing for reasoning with structured data: semantic annotations

to that data correspond to an ontology that defines certain properties. Once these

semantic annotations are created, they are then available for extended queries and

reasoning [22]. The combination of these features provides an integrated solution to

support social collaboration and traceability management in software development.

From one perspective, semantic wikis can facilitate social collaboration and com-

munication in software development. Normal wikis have been used by the software

industry to maintain and share knowledge in software development (e.g., source

code, documentation, project work plans, bug reports, and so on) [24], requirements

engineering [25], and architecture design [26]. With the semantic support of an

underlying ontology and semantic annotations, semantic wikis can actively support

users in understanding and further communicating the knowledge encoded in a wiki

page by – for example – appropriately visualizing semantically represented project

plans, requirements, architecture design, and the links between them [22]. From the

other perspective, the underlying ontologies that support semantic wikis are com-

posed of the concepts from software engineering and the problem domains, and the

relationships between these concepts can be formally specified by the RDF [27] and

OWL [28] ontology languages. This ontology representation helps users to search

for semantic annotations encoded in the semantic wikis through concept

relationships and constraints, and provides reasoning facilities to support dynamic

traceability in software development.

Semantic wikis have been applied to different areas of software engineering,

mostly in research environments. One application focuses on combining documents

from Java code, and to model and markup wiki documents to create a set of

consistent documents [29]. Ontobrowse was implemented for the documentation

of architecture design [30]. Softwiki Ontology for Requirements Engineering

(SWORE) is an ontology that supports requirements elicitation [31]. So far,

we know of no ontological model that supports the traceability between require-

ments and architectural design.
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4.3 What Needs to be Traced and Why?

4.3.1 Architectural Design Traceability

Many requirements traceability methods implicitly assume that a final set of

requirements specifications exists from which traceability can be performed.

Some methods require users to specify the traces manually [32], whilst others

automatically or semi-automatically recover trace links from specifications [3, 17].

The assumption that a definitive set of unchanging documents exists does not

always hold because tracing is also required when requirements and architecture

design are being developed. This is a time when requirements and architecture

design co-evolve. Architectural design activities can clarify non-functional

requirements and trade-offs can compromise business requirements. During this

time, a set of final specifications are not ready but traceability between related items

can help architects find their ways.

Traceability between requirements and architecture design is generally based on

the requirements and design specifications, but the other types of documented

knowledge should also be traceable to the architecture design. This knowledge

often defines the context of a system, e.g., technology standards that need to be

observed in a design or the interface requirements of an external system.

In discussing the support for the traceability of group activities, [1] noted that

Concurrent work is often difficult to coordinate, so the richness of information can
be lost. There are some issues with supporting concurrent updates. Firstly, the

information upon which a trace link is based has changed. For example, the

requirement statement has changed. The trace link will need to be investigated

and may be updated because information that is linked through it may be irrelevant

or incorrect. It is laborious and therefore error prone to keep trace links up to date as

requirements and designs change. Secondly, many decision makers exist and many

parts of the requirements and designs can be changed simultaneously. In this

situation, not all relevant information can be communicated to the right person at

the right time. For instance, a business user adding a requirement to the system may

not know that this change has a performance impact on the architecture design, thus

she/he may not be aware that such a decision requires an architectural design

assessment. In this case, some hints from an intelligent tracing system could help

to highlight this need.

4.3.2 Traceability Use Cases in Co-evolving Architectural
Requirements and Design

In order to develop traceability techniques to support requirements-architecture

design co-evolution, we have developed a set of traceability use cases. These use
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cases show examples of typical activities of architects that require support by a

reasoning framework (see Sect. 4.1). The use cases are described following a

technique introduced in [33] providing a scenario, problem and solution descrip-

tion, and a detailed description of the scenario.

Scenario 1 – Software Reuse An architect wants to check if existing software

can be reused to implement a new functional requirement, and the new functionality

is similar to the existing functionality.

Problem The architect needs to understand the viability of reusing software to

satisfy existing and new functional and quality requirements.

Solution The architect first finds all the architecture components that realize the

existing functional requirements which are similar to the new functional require-

ment. Then, the architect can trace the existing architecture components to deter-

mine what quality requirements may be affected, and whether the existing software

is supporting the new requirement.

Scenario description

1. The architect thinks that the existing software can support a new functional

requirement which is similar to existing functional requirements.

2. The architect selects the existing functional requirements and identifies all the

software components that are used to realize them.

3. For each software component found, the architect identifies the related architec-

tural structure and the quality requirements.

4. The architect assesses if the existing quality requirements are compatible with

the quality requirements of the new functional requirement.

5. If so, the architect decides to reuse the components to implement the new

functional requirement.

Scenario 2 – Changing Requirement An architect wants to update the archi-

tecture design because of a changing functional requirement.

Problem The architect needs to understand the original requirements and the

original architecture design in order to cater for the change.

Solution The architect first finds all existing requirements that are related to the

changing requirement. Then the architect identifies the decisions behind the origi-

nal design. The architect can assess how the changing requirement would affect

related existing requirements and the original design.

Scenario description

1. The architect identifies all the related artifacts (e.g., related requirements, archi-

tectural design decisions, and design outcomes) concerning the changing

requirement.

2. The architect evaluates the appropriateness of the changing requirement with

related existing requirements.

3. The architect extracts previous architectural design decisions and rationale for

the changing requirement.

4. The architect identifies new design issues that are related to the changing

requirement.
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5. The architect proposes one or more alternative options to address these new

issues.

6. The architect evaluates and selects one architectural design decision from

alternative options. One of the evaluation criteria is that the selected decision

should not violate existing architectural design decisions and it should satisfy the

changing requirement.

7. The architect evaluates whether the new architectural design outcome can still

satisfy those non-functional requirements related to the changing functional

requirement.

Scenario 3 – Design Impact Evaluation An architect wants to evaluate the

impact a changing requirement may have on the architecture design across versions

of this requirement.

Problem The architect needs to understand and assess how the changing

requirement impacts the architecture design.

Solution The architect finds all the components that are used to implement the

changing requirement in different versions, and evaluates the impact of the chang-

ing requirement to the architecture design.

Scenario description

1. The architect extracts all the components that realize or satisfy the changing

requirement in different versions, functional or non-functional.

2. The architect finds all the interrelated requirements in the same version and the

components that implement them.

3. The architect evaluates how the changes between different versions of the

requirement impact on the architecture design, and can also recover the decision

made for addressing the changing requirement.

In order to support these traceability scenarios, a dynamic traceability approach

is needed. This approach would require the traceability relationships to remain up-

to-date with evolving documentation, especially when the stakeholders work with

different documents and some stakeholders do not know what others are doing.

In summary, the following traceability functions need to be provided for such an

approach to work effectively:

• Support the update of trace links when specification evolves – this function

requires that as documents are updated, known concepts from the ontology are

used automatically to index the keywords in the updated documents, thereby

providing an up-to-date relationship trace information.

• Support flexible definition of trace relationships – the traceability relationships

should not be fixed when the system is implemented. The application domain

and its vocabulary can change and the ways designers choose to trace informa-

tion may also change. Thus the trace relationships should be flexible to accom-

modate such changes without requiring all previously defined relationships to be

manually updated.

• Support traceability based on conceptual relationships – certain concepts have

hierarchical relationships. For instance, performance is a quality requirement,
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response time and throughput are requirements that concretize a performance

requirement. A user may wish to enquire about the quality requirements of a

system, the performance requirements, or, even more specifically, the response

time of a particular function.

• Concurrent use by requirements engineers and architects – business architects,

requirements engineers, data architects, and software architects typically work

on their respective areas concurrently. They, for instance, need to find the latest

requirements that affect their design, then make some design decisions and

document them. As they do, their decisions in turn may impact the others who

are also in the process of designing. The concurrent nature of software develop-

ment requires that this knowledge and its traces are up-to-date.

4.3.3 Traceability Metamodel

The Traceability metamodel for Co-evolving Architectural Requirements and

Design (T-CARD) is based on the IBIS notations (Issue, Position, Argument, and

Decision) [34] to represent design argumentation. This metamodel is constructed

to satisfy the traceability use cases identified earlier. The concepts and the

relationships of T-CARD are presented in UML notation, grouped into the problem

space and the solution space, as shown in Fig. 4.1. It consists of the following

concepts:

Arguments
(rationale)

Position
(Alternatives)

Issue

Architectural 
Requirement Decision

Design 
Outcome

StakeholderRequirement

Problem Space

Solution Space

Architecture 
Structure

Component

Functional 
Requirement

Non-Functional
Requirement

relate to

depend on

depend on

is proposed by

relate to

result inis realized by

address

support/object to

Fig. 4.1 Traceability metamodel for co-evolving architectural requirements and design
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Stakeholder: refers to anyone who has direct or indirect interest in the system.

A Requirement normally is proposed by a specific Stakeholder, which is the
original source of requirements.

Requirement: represents any requirement statements proposed by a specific Stake-
holder, and a Requirement can relate to other Requirements. There are

generally two types of requirements: Functional Requirements and Non-Func-
tional Requirements, and a Requirement is realized by a set of Design
Outcomes. Note that the general relationship relate to between Requirements
can be detailed further according to the use case scenarios supported.

Architectural Requirement: is a kind of Requirement, and Architectural
Requirements are those requirements that impact the architecture design. An

Architecture Requirement can also relate to other Architectural Requirements,
and the relate to relationship is inherited from its superclass Requirement.

Issue: represents a specific problem to be addressed by alternative solutions

(Positions). It is often stated as a question, e.g., what does the data transport layer
consist of?

Position: is an alternative solution proposed to address an Issue. Normally one or

more potential alternative solutions are proposed, and one of them is to be

selected as a Decision.
Argument: represents the pros and cons argument that either support or

object to a Position.
Decision: is a kind of Position that is selected from available Positions

depending on certain Requirements (including Architectural Requirements),
and a Decision can also relate to other Decisions [35]. For instance,

a Decisionmay select some products that constrain how the application software

can be implemented.

Design Outcome: represents an architecture design artifact that is resulted from an

architecture design Decision.
Component and Architecture Structure: represent two types of Design Outcomes,

that an Architecture Structure can be some form of layers, interconnected modules

etc.; individual Components are the basic building blocks of the system.

The concepts in this metamodel can be classified according to the Problem and

Solution Space in system development. The Problem and Solution Space overlap:

Architectural Requirement and Decision, for example, belong to both spaces.

4.4 Using Semantic Wikis to Support Dynamic Traceability

Themetamodel depicted in Fig. 4.1 shows the conceptualmodel and the relationships

between the key entities in the Problem and Solution Space. This conceptual model,

or metamodel, requires an ontological interpretation to define the semantics of the

concepts it represents. In this section, we describe the ontology of our model to

support the use cases of co-evolving architectural requirements and design.
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An ontology defines a common vocabulary for those who need to share infor-

mation in a given domain. It provides machine-interpretable definitions of basic

concepts in that domain and the relations among them [36]. In software develop-

ment, architects and designers often do not use consistent terminology. Many

terms can refer to the same concept, i.e., synonyms, or the same term is used for

different concepts, i.e., homonyms. In searching through software specifications,

these inconsistencies can cause a low recall rate and low precision rate, respec-

tively [30].

An ontology provides a means to explicitly define and relate the use of software

and application domain related terms such as design and requirements concepts.

The general knowledge about an application domain can be distinguished from the

specific knowledge of its software implementation. For instance, system throughput

is a general concept about quality requirements and that is measurable; it can be

represented in a sub-class in the hierarchy of quality requirements class. In an

application system, say a bank teller system, its throughput is a specific instance of

a performance measure. Using an ontology that contains a definition for these

relationships, this enables effective searching and analysis of knowledge that are

embedded in software documents.

Ontology defines concepts in terms of classes. A class can have subclasses.

For instance, the throughput class is a subclass of efficiency, meaning that through-

put is a kind of performance measure. A throughput class can have instances that

relate to what is happening in the real-world. Some examples from an application

system are: the application can process 500 transactions per second or an operator
can process one deposit every 10 s.

A class can be related to another class through some defined relationships. For

instance, a bank teller system satisfies a defined throughput rate. In this case,

satisfies is a property of the bank teller system. The property satisfies links a specific
requirement to a specific throughput.

4.4.1 A Traceability Ontology for Co-evolving Architectural
Requirements and Design

An ontology requires careful analysis and planning. If an ontology is designed for

a single software application, then it may not be flexible and general enough to

support other systems. To support general traceability of requirements and archi-

tecture design specifications, we define an ontology using the requirements and

architecture metamodel (Fig. 4.1). The ontology (Fig. 4.2) is represented in a UML

diagram that depicts the class hierarchy and the relationships between the classes.

The dotted line represents the relationships between classes. The relationships are

defined in terms of the properties within a class.

In this model, there are five key concepts, represented by five groups of classes.

These concepts are commonly documented in requirements and architecture design
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specifications, and the ontology is designed to represent these key concepts in

software specifications:

• DC is a concept about the information of a document or a record. Dublin Core

Metadata Initiative (DCMI) is an open organization engaged in the development

of interoperable metadata standards that support a broad range of purposes and

business models [37]. We make use of the concept defined in dc:record to

identify the documents that are created for requirements and architecture pur-

pose. In particular, we make use of the elements defined in the DC concept to

support traceability of requirements and design across multiple versions of

a single document. For example, a DC instance can identify the creator, the

version, and the contributors of a requirement.

• Requirement is a concept that represents all the requirements of a system,

including functional and non-functional requirements. A requirement has a

unique identification and a description. These elements are implemented as

properties (sometimes also referred to as slots) of the Requirement class. The
properties of the Requirement class are inherited by all its subclasses. A require-

ment has an identifier and a description, so both functional and non-functional

requirements have these properties as well. For example, an instance of a

functional requirement would be a sub-class of Requirement. It would have

a req_id of R1.1.3; a req_descr of Change User Access; it can be realized_by
a component called DefineAccessRight. A user of the semantic wiki can ask the

system for all requirements, and both functional and non-functional require-

ments would be retrieved.

• Non-functional Requirement represents all the quality requirements that must be

satisfied by a system. Its subclasses such as efficiency and usability represent

-title
-subject
-description
-type
-source
-relation
-creator
-contributor
-date
-format
-identifier

DC

-qual_is_related_to_
-depends_on
-req_is_related_to
-realized_by
-depends_on

Functional Requirement

-req_id
-req_descr
-is_proposed_by

Requirement

-qual_attrribute_measures

Non-functional Requirement

qual_is_related_to

req_is_related_to

is proposed by

-satisfies

Architecture
-arch_structure_name
-arch_style
-comprises_of

Architecture Structure

-component_id
-component_descr

Component

comprises_of

satisfies

realized_by -design_decision
-decision_issue
-arguments
-results_in

Decision

results_in
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Usability

and other QAs

identifies

identifies

relation_supercede

Fig. 4.2 Ontology for traceability between requirements and architecture
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different types of non-functional requirements. Non-functional requirements

are sometimes measureable, e.g., throughputs. So, we use a property called

qual_attribute_measures to capture this information for all measurable

quality attributes.

• Decision represents the decisions that have been made. It has properties that

capture the issues, arguments of a decision. For instance, the arguments for

choosing an architecture design can be captured and linked to the design.

• Architecture represents the design outcomes of a decision, and the architecture

realizes all requirements, both functional and non-functional. Architecture has

two subclasses, Architecture Structure and Component. Architecture Structure
represents the architecture styles that are used in an architecture design, such as

multi-tier, web-based etc., whereas Component represents the individual build-
ing blocks that are used in an architecture. For instance, the ontology can capture

the instances of a web-server architecture style and use the comprise_of property
to link to components that generate dynamic HTML pages from a database

application component.

Figure 4.2 depicts two class relationships: (a) class hierarchy represents an is-a
relationship. So efficiency is-a non-functional requirement, and therefore it is-a
requirement also; (b) a relationship between two disjoint classes is implemented

through the property of a class. An example is that a requirement is proposed by

a stakeholder. A stakeholder is represented in the ontology as a dc:contributor.
In this case, both the DC record and the requirement are two disjointed classes

linked together by the property field is_proposed_by in Requirement class.
All the important relationships in this ontology are described below:

• A DC record identifies a document, be it a requirements document or an

architecture design. This identification makes use of the standard elements

provided by the DC metamodel. The amount of information that is contained

in a document, whether it is one or a set of requirements, is up to the user. The

key elements are: (a) the title and subject identify a requirement or a design; (b)

the source identifies the version of a requirement; (c) the relation identifies if the
document supercedes another document; (d) the identifier is the URI of the
semantic wiki page. (e) the contributor identifies the stakeholders who contri-

bute to the requirement or the design.

• Functional Requirement depends_on a decision. If a decision or a rationale of

a design decision has been documented, then the requirement can be explained

by the documented decision.

• Functional Requirement qual_is_related_to non-functional requirements.

Often a requirements specification explicitly defines what quality is required

by a system. In such cases, traceability can be provided if this relationship is

captured in the ontology.

• Decision results_in an architecture. When business analysts and architects

capture a decision, the outcome or the architecture design of a decision, includ-

ing its rationale, can be traced to the decision. When results_in relationship

is used in combination with the depends_on relationship, architects can query
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what components are used to realize a specific requirement and why, for

instance.

• Functional Requirement is_realized_by an architecture design. Designers,

programmers, and testers often need to know the implementation relationships.

If a decision has been documented and included in the ontology, then this

relationship can be inferred from the original requirement. However, design

decisions are often omitted, and so the implied realization link between

requirements and design outcomes becomes unavailable. In order to circumvent

this issue, we choose to establish a direct relationship between requirements and

architecture.

• Architecture Design satisfies some non-functional requirements. This rela-

tionship shows that an architecture design can satisfy the non-functional

requirements.

Together these relationships mark and annotate the texts in requirements and

architecture specifications, providing the semantic meaning to enable architects

and analysts to query and trace these documents in a meaningful way. Each trace

link is an instance of the ontology relationships. Traceability is implemented by

a semantic wiki implementation that supports querying or traversing.

4.4.2 SE-Wiki Implementation

In this section, we describe a semantic wiki implementation for Software Engineer-

ing, called SE-Wiki, which is implemented based on Semantic MediaWiki (SMW)

[38]. We present how the ontology described in Sect. 4.4.1 is implemented with

other semantic features in SE-Wiki. SMW is one of the prototype implementations

of semantic wikis. There are two reasons for selecting SMW as the basis of SE-

Wiki: (1) SMW implements most of semantic functions, including ontology defini-

tion and import, semantic annotation and traceability, and semantic query etc.,

which provide fundamental capabilities to perform the use cases presented in

Sect. 4.3.2; and (2) SMW is a semantic extension of MediaWiki1, which is the

most popular wiki implementation on the Web, e.g., used by Wikipedia2. The

popularity and maturity of MediaWiki will make SE-Wiki easily adoptable by

industry.

The SE-Wiki uses and extends the capability of SMW by applying the semantic

features in the software engineering domain, from documentation, issue tracing,

reuse, and collaboration to traceability management. In this chapter, we focus on

the traceability management for the co-evolution of architectural requirements and

design, combined with the ontology that supports dynamic traceability between

1http://www.mediawiki.org/
2http://www.wikipedia.org/
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architectural requirements and design. The implementation details of SE-Wiki are

presented below.

Ontology support: as mentioned before, a semantic wiki is a wiki that has an

underlying ontology that is used to describe the wiki pages or data within pages in

the wiki. The ontology model elaborated in Sect. 4.4.1 is composed of four basic

constructs, which can be defined in SMW as shown in Table 4.1. For example,

[[Category:Requirement]] defines the class Requirement.
Semantic annotation: SMW only supports semantic annotation of wiki pages

without supporting semantic annotation of data within wiki pages. This means that

each semantic annotation in SMW is represented as a wiki page that belongs to

a certain concept in the ontology model. In SE-Wiki, it is quite easy to annotate

a requirement or architecture design artifact by adding text [[Category:Concept
Name]] in the editing box of the wiki page based on the ontology defined or

imported.

Semantic traceability refers to the semantic tracing between semantic

annotations. In common wikis implementation, traceability is established by links

between wiki pages without specific meaning of these links, while in semantic

wikis, the semantics of these links are specified and distinguished by formal

concept relationships in an ontology, which is beneficial to our purpose. For

example, Functional Requirement 001 is_proposed_by Stakeholder A. The
Functional Requirement 001 and Stakeholder A are semantic annotations that

belong to concept Functional Requirement and Stakeholder respectively. The

concept relationship is_proposed_by between Functional Requirement and
Stakeholder is used to trace semantically the relationship between the two

annotations. In SE-Wiki, a semantic tracing can be established by an instance of

Property in SMW between two wiki pages (i.e., semantic annotations), e.g., for

above example, we can add text [[is proposed by::Stakeholder A]] in the editing

box of Functional Requirement 001 to create the semantic tracing.

Semantic query is used to query semantically the data (i.e., semantic

annotations recorded in SE-Wiki) with semantic query languages, e.g., SPARQL

[39] or a special query language supported by SMW. The capability of semantic

queries is supported by the underlying ontology of the SE-Wiki, for example, show
all the Functional Requirements proposed by Stakeholder A. Two methods for

semantic query are provided in SE-Wiki: semantic search and in-line query.

Semantic search provides a simple query interface, and user can input queries and

Table 4.1 Ontology definition in SMW

Ontology construct SMWConstruct Example in SMW

Class Category [[Category:Requirement]]

Class property Property [[req id::FR-001]]

Class
relationship

Property that links to the

instance of other Class [[is proposed by::Stakeholder A]]

SubClassOf Category subcategorization

In the editing box of Category:Functional
Requirement, specify [[Category:
Requirement]]
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get the query results interactively. For example, query input [[Category:Functional
Requirement]][[is proposed by::Stakeholder A]] will return all the functional

requirements proposed by Stakeholder A. Semantic search is applicable to tempo-

rary queries that vary from time to time. In-line query refers to the query expression

that is embedded in a wiki page in order to dynamically include query results into

pages. Consider this in-line query: ask: [[Category:Requirement]][[is proposed
by::Stakeholder A]] | ?is proposed by. It asks for all the requirements proposed by

Stakeholder A. In-line query is more appropriate in supporting dynamic traceability

between software artifacts, e.g., when a functional requirement proposed by Stake-
holder A is removed from a requirements specification, the requirements list in the

wiki page of Stakeholder A will be updated automatically and dynamically.

Example uses of these semantic features supported in SE-Wiki for the trace-

ability use cases are further described in the next section.

4.5 Examples of Using SE-Wiki

In this section, we present several examples of applying SE-Wiki for performing

the use cases presented in Sect. 4.3.2. We show how the semantic features in SE-

Wiki can be used to support the co-evolution of architectural requirements and

design. We draw these examples from the NIHR (National Institute for Health

Research of United Kingdom) Portal Project [40]. The system aims to provide

a single gateway to access information about health research and manage the

life-cycles of research projects for the broad community of NIHR stakeholders,

including e.g., researchers, managers, and complete research networks. We apply

the SE-Wiki to the requirements and design specifications from this project. Then

we demonstrate the use cases that we have defined to show SE-Wiki support for

the traceability in co-evolving architectural requirements and design.

As presented in Sect. 4.4.2, some basic semantic functions are provided by SE-

Wiki, including:

Ontology support: the underlying ontology concepts and the semantic relation-

ships between concepts are defined in SMW.

Semantic annotation is used to annotate a requirement or architecture design

artifact documented in a wiki page with a concept (i.e., Category in SMW).

Semantic traceability is supported by semantic tracing which is established

between semantic annotations, and semantic traces will follow the semantic

relationships defined at the ontology level.

Semantic query: the semantic annotations of requirements or architecture design

artifacts allow SE-Wiki to query the annotations semantically by simple or

complex queries. Queries can be entered manually through the query interface

or embedded as in-line query in the wiki pages.

With the support of these basic semantic functions, we demonstrate how the use

cases presented in Sect. 4.3.2 can be achieved with the examples from the NIHR
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Portal project. In order to implement the use cases, all the relevant requirements and

architecture specifications must be semantically annotated based on the traceability

ontology specified in Sect. 4.4.1, e.g., in a sample requirement statement: Student
would like to download course slides from course website., Student is annotated
as an instance of concept Stakeholder, would like to is annotated as an instance of

concept relationship is_proposed_by, and download course slides from course
website is annotated as an instance of concept Requirement.

These semantic annotations are performed by business analysts and architects

as they document the specifications. The main difference between this method and

some other requirements traceability methods is that individual requirement and

design are semantically annotated, and their traceability is enabled by reasoning

with the ontology concepts.

4.5.1 Scenario 1 Software Reuse

Description: An architect wants to check if existing software can be reused to

implement a new functional requirement, which is similar to existing functional

requirements that have been implemented (see Sect. 4.3.2).

Example: A new functional requirement Track Usage: The Portal tool should
be able to track usage of resources by all users is proposed by the Portal Manager.
The architect thinks that this new functional requirement is similar to an existing

functional requirement: i.e., Change User Access: The Portal tool should be able to
change user’s access rights to resources3. The architect wants to check if the

existing software (i.e., design outcomes/architecture) that is used to implement

the requirement Change User Access can be reused to implement the new require-

ment Track Usage, especially with regards to the quality requirements.

Since the requirements and architecture specifications are already semantically

annotated in SE-Wiki, semantic query can be employed to query the direct and

indirect tracing relationships from an instance of Functional Requirement (i.e., the
existing functional requirement Change User Access) to all the concerned Design
Outcomes that realize this functional requirement, and all the Non-Functional
Requirements that the Design Outcomes can satisfy. The snapshot of this

scenario through semantic query is shown in Fig. 4.3. The top part of this figure

is the editing box for semantic query input, and the lower part shows the query

results.

As described in the example, the architect first extracts all the Design Outcomes
that are used to realize the existing functional requirement Change User Access,
and then queries all the Non-Functional Requirements that are satisfied by these

Design Outcomes, in order to evaluate whether these Design Outcomes can be

3Resources in NIHR Portal project refer to all the information maintained by the Portal, e.g.,

sources of funding for different types of research.
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reused or not for the implementation of the new functional requirement Track
Usage. This query is composed of two parts: the query input in the upper left of

Fig. 4.3 [[Category:Design Outcome]][[realizes::Change User Access]] extracts
all the Design Outcomes that realize Change User Access requirement, i.e., REST
Structure and SOA Structure, which are directly related with Change User Access
requirement; the query input in the upper right ?satisfies [[Category:Non-Functional
Requirement]] returns all the Non-Functional Requirements, i.e., Integration
Requirement and Interoperability Requirement, which are indirectly related with

Change User Access requirement through the Design Outcomes.
With all the Non-Functional Requirements and their associated Design

Outcomes related to Change User Access requirement, which are all shown in

one wiki page, the architect can have a whole view of the implementation context

of the new functional requirement Track Usage, and assess the compatibility of

these Non-Functional Requirements with the Non-Functional Requirements related
to the new functional requirement. With this information, the architect will decide

whether or not to reuse these Design Outcomes for the implementation of the new

functional requirement Track Usage.
When new Design Outcomes are added to realize a requirement, in this case

the requirement Change User Access, the semantic query will return the latest

results (i.e., updated Design Outcomes realizing Change User Access). This allows
SE-Wiki to support dynamic changes to requirements and architecture design

which normal wikis cannot achieve with static trace links.

Under the current ontology definition, other possible software reuse scenarios

can be supported by SE-Wiki, some of them are:

• Find all components that support a particular kind of quality requirements, and

satisfy some quality requirements thresholds.

• Find all components that are influenced by two specific quality requirements

simultaneously.

Fig. 4.3 Scenario 1 through semantic query interface in SE-Wiki
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• Find the architecture design and all the components within it that support an

application sub-system.

• Trace all components that are influenced by a design decision to assess if the

components are reusable when the decision changes.

4.5.2 Scenario 2 Changing Requirement

Description: An architect wants to update an architecture design according to

a changing requirement (see Sect. 4.3.2).

Example: A functional requirement Change User Access: The Portal tool
should be able to change user’s access rights to resources. is changed into Change
User Access: The Portal tool should only allow System Administrator to change
user’s access rights to resources.Accordingly, the design based on this requirement

should be updated as well. To achieve this, the architect should make sure that

this changing requirement has no conflict with related existing requirements, and

understand the context of this requirement before updating the design. The architect

first extracts all the related artifacts concerning this changing requirement by

navigating to the wiki page of this requirement in SE-Wiki, which records all the

artifacts (e.g., requirements, architectural design decisions, and design outcomes)

related to this requirement as shown in Fig. 4.4.

In this wiki page, the architect can easily evaluate those related artifacts

concerning the changing requirement by navigating to their wiki pages. For exam-

ple, the changing requirement Change User Access is related to the requirement

Track Usage: The Portal tool should be able to track usage of resources by all
users. There are two types of traces shown in this page: outgoing and incoming

traces, which are both supported by the concept relationships defined in underlying

ontology. Outgoing traces are recorded by property, e.g., requirement ID, is
proposed by, etc. These outgoing traces show how this requirement relates to

other artifacts, in a one-to-one or often one-to-many relationships. Incoming traces

are shown in this page by in-line queries, which is another kind of semantic query

feature provided by SE-Wiki as presented in Sect. 4.4.2. There are three in-line

queries to show the incoming traces in Fig. 4.4, for example, the first incoming trace

Decision: Portal Personalization depends_on Change User Access is created by
in-line query ask:[[Category:Decision]] [[depend on::Change User Access]] | ?
depend on. These incoming traces show how other artifacts relate to this require-

ment. The advantage of incoming traces generated by in-line queries is that the

results of the in-line query shown in the wiki page will be updated dynamically

according to the query results at run-time, which is most beneficial to evaluate and

synchronize requirements and architecture design when both of them co-evolve

simultaneously by different stakeholders, for example, when a new Design Out-
come is made to realize the changing requirement Change User Access, then the
incoming traces about the Design Outcomes that realize Change User Access
will be updated automatically in this wiki page.
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In Scenario 2, the architect evaluates and finds that related requirement Track
Usage is not affected by the change of requirement Change User Access. But the
architect finds an issue Access Control by Identity caused by the changing require-

ment. To address this issue, a design option Identity Management: Provide an
identity management infrastructure in portal personalization management is

selected by the architect and documented as a Decision. A design outcome Identity
Management Component is designed to realize the changing requirement

Change User Access. All these updates on related artifacts are recorded in this

requirement wiki page through incoming and outgoing traces as shown in Fig. 4.5.

With the information found in this page, the architect can further evaluate

whether the newly-added decision Identity Management is compatible with other

existing Designs, e.g., Portal Personalization, and whether the updated Design
Outcomes still satisfy those related Non-Functional Requirements, e.g., Inte-
gration Requirement. TheDecisions andDesign Outcomesmay change accordingly

based on these further evaluations.

A number of other use cases that are similar to the changing requirement can also

be supported by SE-Wiki:

Fig. 4.4 Scenario 2 through in-line semantic query in SE-Wiki
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• Find all functional requirements that may be affected by the changing

requirement.

• Find all non-functional requirements that have quality impacts on a functional

requirement.

• Find all functional requirements that would be influenced by a change in the

non-functional characteristic of a system, e.g., performance degradation.

4.5.3 Scenario 3 Design Impact Evaluation

Description: Requirements are frequently changed from one software version to

the next, and an architect tries to evaluate and identify the impacts of the changing

requirements on architecture design, so that requirements and architecture design

are consistent.

Example: The requirement Change User Access is updated in the next version,

i.e., Version 1: The Portal tool should be able to change user’s access rights to
resources, and Version 2: The Portal tool should only allow System Administrator
to change user’s access rights to resources. The architect extracts different versions
of the requirement with the same requirement ID using a semantic query

Fig. 4.5 Updated results of scenario 2 through In-line semantic query in SE-Wiki
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(e.g., [[Category:Requirement]][[is identified by::DC 001]]), in which DC 001 is

the DC element to identify the version of a requirement. The architect finds the

components for implementing the requirements by clicking the wiki page of the

requirement in different versions. The architect then finds the other components

for implementing related requirements through reasoning support (e.g., iteratively

traverse all the related requirements), which is based on the reasoning rules and

relationships defined on ontology. According to the information, the architect can

identify the changes to the architecture design in two sequential versions of the

requirement. From that she/he can evaluate the change impacts to the architecture

design. A comparison of the wiki pages of requirements across two versions (left

side is a latest version of the requirement Change User Access, and right side is

a previous version of Change User Access, which is superseded by the latest

version) is shown in Fig. 4.6. The requirement changes between versions with

changed decisions and design (circled in Fig. 4.6) will be further evaluated for

design impact analysis.

A number of other use cases that employ the reasoning framework can also be

performed by SE-Wiki:

Fig. 4.6 Scenario 3 through comparison in SE-Wiki
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• An architect wants to get a list of open quality requirements for which architec-

tural decisions are needed.

• An architect wants to evaluate and detect the soundness of the software artifacts,

e.g., a design decision is wanted when an architecture is used to realize a

functional requirement.

• An architect can identify the architecture design components that have been

changed from the previous software version.

• Analysts or architects can find the latest changes to a requirement or a design of

interest.

• Analysts or architects can find changes that have been made by certain people or

within a certain period of time.

4.6 Conclusions

Large-scale software development involves many people/stakeholders who develop

requirements and architectural design. Often, these people are dispersed geographi-

cally, and the decisions that they make on the requirements and design evolve over

time. This situation has created a knowledge communication issue that can cause

conflicts and inconsistencies in requirements and design. Traceability methods

based on static trace links cannot address this problem because the stakeholders

often do not know what has been changed, let alone creating those trace links.

Moreover, specifications and communications such as emails and meeting minutes

are mostly documented in a natural language, making the search of related infor-

mation difficult.

We solve this problem by providing a new method that makes use of semantic

wiki technologies. We propose a general-purpose ontology that can be used to

capture the relationships between requirements and architectural design. These

relationships are derived from the use cases that we have identified. Semantic

MediaWiki has been used to implement SE-Wiki. SE-Wiki supports a traceability

metamodel and implements traceability use cases using a traceability ontology.

Furthermore, SE-Wiki supports semantic annotation and traceability, and the

annotated semantic wiki pages provide an information base for constructing seman-

tic queries. This approach allows business analysts and designers to find up-to-date

and relevant information in an environment of co-evolving requirements and

designs.
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Chapter 5

Understanding Architectural Elements

from Requirements Traceability Networks

Inah Omoronyia, Guttorm Sindre, Stefan Biffl, and Tor Stålhane

Abstract The benefits of requirements traceability to understand architectural

representations are still hard to achieve. This is because architectural knowledge

usually remains implicit in the heads of the architects, except the architecture design

itself. The aim of this research is to make architectural knowledge more explicit

by mining homogenous and heterogeneous requirements traceability networks. This

chapter investigates such networks achieved by event-based traceability and call

graphs. Both traces are harvested during a software project. An evaluation study

suggests the potential of this approach. Traceability networks can be used in under-

standing some of the resulting architectural styles based on the real time state of

a software project. We also demonstrate the use of traceability networks to monitor

initial system decisions and identify bottlenecks in a software project.

5.1 Introduction

In spite of substantial research progress in the areas of requirements engineering

and software architectures, little attention has been paid to how to bridge the gap

between the two [1]. It is essential to know how to transition from requirements to

architecture and vice versa, and to understand the impact of architectural design on

existing and evolving software requirements. This research focuses on investigating

how requirement traceability approaches can be used to bridge this gap between

software requirements and architectural representations.

When software requirements evolve, appropriate traceability mechanisms can

provide an understanding and better management of the linking between require-

ments and associated artefacts during evolving project cycles [2]. Evolution of

software requirements suggests a similar evolution in architecture because changes

to software requirements normally imply updates to the different components

used to achieve the system. Such component updates can trigger a change in

structure of the system and the relationship of updated components with other

components of the system.

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_5, # Springer-Verlag Berlin Heidelberg 2011
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Thus, the main research question is how software requirements evolution impacts

on the underlying architecture of the system. This question will be addressed by

investigating how traceability relations between software requirements and different

components in a system reveal its architectural implications. Turner et al. [3] des-

cribe a requirement feature as “a coherent and identifiable bundle of system func-

tionality that helps characterize the system from the user perspective.” We envisage

a scenario where decisions are previously taken on the desired architecture to be

used in implementing a specified feature in the system. We subsequently harvest

homogenous and heterogeneous requirements traceability networks. Such traceabi-

lity networks can also represent semantic graphs from which the actual architectural

representation of the system can be inferred. The aim then is to compare and validate

the desired architecture against the real-time inferred system architecture used

to implement a desired user feature.

In the remaining part of this chapter, Sect. 5.2 first provides the background on

requirements traceability and software architectures and discusses the architectural

information needs of different stakeholders. Section 5.3 presents the automated

requirements traceability mechanism that is used to realize our traceability

networks. A system architectural inference mechanism based on extracted require-

ments traceability networks is explained. Section 5.4 presents an evaluation of our

approach based on an implemented prototype. Section 5.5 presents related work

and subsequently our conclusion and further work in Sect. 5.6.

5.2 Requirements Traceability and Software Architectures

5.2.1 Inferring Architectural Rationale from Traceability
Networks

Software architecture seeks to represent the structure of the system to be developed.

The structure is defined by components, their properties and inter-relationships

[4]. As pointed out by Bass et al. [5], a project’s software architecture acts as

a blueprint, serves as a vehicle for communication between stakeholders and con-

tains a manifest of earliest design decisions. An architecture is the first artifact that

can be analyzed to determine how well the quality attributes of an ongoing project

are being achieved. In line with other chapters in this book, architectural characteri-

sations range from the actual architecture of the system to its inferred or intended

architecture. Such architectures do not exist in isolation, rather they are influenced

by external factors such as the system requirement features and quality goals from

the customer and developing organization, task breakdown structure and developer

task assignment, lifecycle etc. Architectural rationale is thus a means to understand

design architectures by considering the external factors that has influenced their

realisation. Architectural rationale is realised as stakeholders endeavour to satisfy

their architectural information needs by asking questions that have architectural
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implications (see example of questions in Sect. 5.2.2). Architectural rationale is

essential to access if a desired architectural plan for achieving a specified system’s

requirement is being realized in the tangible real-time representation of the system.

There are different viewpoints on traceability, but mostly aimed at addressing

the same research problem of enhancing conformance and understanding during

software development processes. Palmer [6] claims “traceability gives essential

assistance in understanding the relationships that exist within and across software

requirements, design and implementation.” Requirements traceability enables the

harmonization between the stakeholder’s requirements and the artifacts produced

along the software development process. Alternatively, requirements traceability is

aimed at identifying and utilizing relationships between system requirements and

other artefacts produced during a software project’s lifecycle [7]. Typically, such

artefacts include external documents, code segments, hardware components and

associated stakeholders. Traceability facilitates software understanding, account-

ability, and validation & verification processes. These benefits of traceability have

particularly been realized between explicit software artifacts, such as homogenous

relationships between instances of requirement and heterogeneous relationships

between requirements and code artefacts [8]. Relationships have varying degrees

of relevance depending on the stakeholder involved.

The benefits of requirements traceability to software architectural representations

are still little explored. This is because architectural knowledge which consists of

architecture design, design decisions, assumptions and context, usually remains

implicit in theminds of the architects, except the delivered architecture design itself [9].

Figure 5.1 represents our approach to investigating architectural representations

from harvested traceability links. This scenario assumes that at the early phase of

Fig. 5.1 Inferring architectural rationale from traceability links
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the project, architectural decisions are made to implement specific features of the

system. Such features can further generate a set of use cases and more concrete

requirements that achieve the use case (Fig. 5.1a). Subsequently, different

stakeholders use a set of components to achieve a specified system feature as

shown in Fig. 5.1b. Thus, the main concern here is deriving some real time

architectural insight based on the trace links generated between system features

or use cases, components and stakeholders.

It is not straightforward to achieve architectural insight based on tangible

representation of the system and harvested traceability links since different

components of a system can be associated with multiple desired features of the

system and in most cases worked on by different stakeholders from varying pers-

pectives, to achieve different tasks or features. Hence, traces between system

components, features and stakeholders will result in a complex web from which

the core challenge is to infer an earlier guiding design rationale. The aim of this

research is to reveal architectural rationale from such a real-time traceability

viewpoint. This is achieved by mining homogenous and heterogeneous require-

ments traceability networks. In this chapter, we focus on a subset of possible

architectural insights classified either as explicit or implicit. Explicit insight can

be directly inferred from generated traceability networks, e.g., the architecture style

revealed by real-time links between project entities. Implicit architectural insight is

the additional information that can be assumed based on the interaction between

the different project entities, e.g., development model, feature and requirements

breakdown structure, decomposition and allocation of responsibility, assignment

to processes and threads, etc.

5.2.2 Stakeholder Needs for Architectural Information

Palmer’s [6] viewpoint of requirements traceability suggests that the relationships

between different project entities can allow architects to show compliance with the

requirements and help early identification of requirements not satisfied by the initial

architecture. Hence, some information needs must be satisfied by the traceability

links. It is expected that a stakeholder’s needs will vary depending on role (e.g.,

architect/programmer/tester) and task (e.g., initial development/maintenance). As

an example, consider software developer D who needs to make some changes to

a software product due to a requirements change, e.g., the customers have expressed

a wish for altering a certain use case. Unless the task is trivial, there are a number of

questions that D might ask, for example:

– Which code artefacts (e.g., classes) are involved in implementing the use case

and how do they affect the architecture of the system, e.g., a predefined archi-

tectural style or the system feature and requirements breakdown structure?

– If the class C is modified to fulfil the requirements change, what other use cases

or system features might also be affected by this modification? And what
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adaptation is required in the initial architecture, (e.g., the assignment of class

components to processes and threads)?

– Who were the stakeholders involved in writing the use case, or the class C

and other classes that are relevant for the use case? How has the desired

change affected the decomposition and allocation of responsibility in the initial

software architecture?

We refer to these requests as architectural information needs, defined as

the traceability links between entity instances, system features or use cases,

stakeholders and code artefacts. Such information is essential to understand the

architecture. Ideally the traceability links required to answer such questions might

have been explicitly captured during the project, e.g., which developer contributes

to which artefacts, and which artefacts are related to each other? But this rarely

happens – at best such traceability information is incomplete and outdated because

many developers find it too time-consuming to update it.

In the remaining part of this research, we investigate traceability links harvested

automatically by event based tracing and the use of call graphs. We then evaluate

a number of architectural representations inferred from the harvested traceability

links.

5.3 Deriving Requirements Traceability Networks for Inferring

Architectural Representations

In this section, we present an automated method for harvesting a traceability

network based on the scenario below:

Scenario. Bill, Amy, and Ruben are members of a team developing an online

cinema ticketing system, TickX. There are two front-end use cases required:

Purchase Tickets and Browse Movies. Additional use cases for system admini-

strators are not discussed here. A number of code artefacts are being developed to

realise TickX, including Ticket.java, Customer.java, Account.java, Booking.java,

Movie.java, MovieCataglog.java, and Cinema.java.

While Amy and Bill have been collaborating to implement the Purchase Tickets

use case, Ruben has been responsible for the Browse Movies use case. The

following interaction trails were observed:

– While Amy was collaborating on Purchase Tickets she created and updated

the Account.java and Customer.java code artefacts. She viewed and updated

Booking.java a number of times. She also viewed MovieCatalog.java and

Cinema.java.

– In the initial phase of Bill’s collaboration on the Purchase Tickets use case,

he viewed Account.java and MovieCatalog.java. Then he created and updated

Ticket.java and Booking.java.
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– Ruben’s implementation of the Browse Movies use case involved the creation

and further updating of MovieCatalog.java, Cinema.java, and Movie.java.

Ruben also viewed Ticket.java a number of times.

Traceability links can be homogenous, e.g., a code component being related to

another code component, or heterogeneous, e.g., a relationship between a developer

and code component, or a use case and component. The detailed interaction event

trails is as shown in Fig. 5.2. Any selected time-point corresponds to at least one

event associated with a use case, a developer, and a code artefact. For instance, at

time-point 1, a create event associated with Account.java was executed by Amy

while working on the Purchase Tickets use case. Similarly, time-point 7 has two

events: Ruben updated Cinema.java (absolute update delta 50 [magnitude of the

update based on character difference]) while working on Browse Movies, and Bill

viewed Account.java as he worked on Purchase Tickets.

In this scenario, the Purchase Tickets use case is associated with Bill, Amy and

a number of code artefacts. Also, MovieCatalog.java is associated with the three

developers as well as the two use cases. On the whole, within such a rather small

and seemingly uncomplicated scenario involving only two use cases, three

developers and eight code artefacts, 27 different traceability links can be identified.

To make sense of such number of dependencies, they must be ranked for relevance.

For instance, the relevance of traceability links between a use case and developer is

dependent on the number of interaction events generated over time by the developer

in achieving the use case. A relevance measure of trace links between two entities is

non-symmetric. This is because the relevance measure is firstly dependent on the

number of other entity instances a selected entity can be traced to, and secondly the

amount of interaction events generated as a result of each trace link.

Fig. 5.2 Monitored interaction trails used to achieve TickX across 25 time-points
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This demonstrated scenario poses a number of questions. Firstly, what are the

possible automated methods for harvesting a traceability network? Secondly, how

can the system’s architectural representations be revealed by these networks? In

addressing the first question, this research investigates an event based mechanism

for retrieving interaction events for the subsequent generation of traceability

networks. This involves capturing navigation and change events that are generated

by the developers. The advantage of this approach is the opportunity to automati-

cally harvest real-time trace links. The event based approach also provides a basis

for inferring real-time architectural representations. Some ideas for such an

approach has been presented in earlier work [10]. In this section, we present an

event based linear mechanism to generate traceability links and rank their rele-

vance. Since event based approaches are sometimes prone to generating false

positives, we also use call graphs to validate the event based networks.

5.3.1 Event-Based Mechanism for Capturing Trace Links

In a previous paper [2], we proposed an automated event-based process for

harvesting requirement traceability links relating code artefacts and developers to

use cases. Trace links were formed by monitoring events initiated by a developer

working in the context of a use case on a code artefact. The relative importance, or

relevance, of a code artefact or developer to a selected use case was based on the

type and frequency of developer actions, e.g., create, edit or view; and on the

entity’s sphere of influence in the system, i.e., how many other entities they are

associated with .

This chapter explores how the harvested requirement traceability links can be

used to generate a complete traceability network for a software development

project. Furthermore, it is investigated how the relative importance of trace links

can be used to provide insight into the centrality of each developer, use case and

code artefact to the software project as a whole. Centrality is a structural attribute of

nodes within a network and provides insight into the importance, influence and

prominence of that particular node. Based on the centrality of entities in traceability

networks, we investigate architectural rationale that can be inferred.

The event based mechanism uses events generated within a development tool

and the sphere of influence of project entities to derive requirements trace networks.

Rather than monitoring the entire space of interactions that can occur, we focus on

a core set of event types that influence the changing state of a software project –

create, update and view. Associated with an ‘update’ is the update delta – the

absolute difference in the number of characters changed or added to the code

artefact before and after the event. A ‘view’ event indirectly affects the state of

artefacts, possibly enhancing the understanding of a developer in order to update

the same artefact or other artefact instances.

During collaboration different work contexts – associations between use case

(system features), developer and artefact entities – are formed. These work contexts
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are constantly changing in response to events, and entities may participate in

several work contexts. Figure 5.3 shows example work contexts for Amy, Purchase

Tickets, and MovieCatalag.java. In Fig. 5.3a, Amy is the entity that forms the

perspective of the work context graph while the Purchase Tickets use case and the

classes MovieCatalog, Account, Customer, Booking and Cinema are all the entities

relevant to Amy’s work context.

Weights are assigned to each interaction event type as shown in Table 5.1. The

weights were derived from the study of CVS records in real development projects

[11], and are in line with related work by Fritz et al. [12] that emphasized the

importance of the creator of code artefacts. In addition, studies conducted by Zou

and Godfrey [2] suggested the need to distinguish between random and relevant

view events. Thus, viewing is weighted relatively lightly compared to creates and

updates (weighted by the size of the update in terms of the absolute number of

characters changed). Typically, changing one line of code is much less significant

compared to rewriting an entire module.

This research assumes that the size of an entity’s work context is proportional to

its relative influence in the collaboration space. A use case implemented by several

developers and artefacts is considered to hold more information about the state of

a project than a use case associated with only a small number of developers and

artefacts. This is captured by the concept of sphere of influence (SOI).

SOI is a general concept used to capture both geographic and semantic

groupings, and provides a well-defined boundary for interactions [13]. SOI

indicates the region over which an entity exacts some kind of relevance and is

defined by its work context. The SOI ratio is used to represent the relative influence
an entity has on the collaboration space. The SOI ratio of an entity is defined as the

‘Purchase
Tickets’

‘Purchase
Tickets’

‘Purchase
Tickets’

Ticket.java

Cinema.java

Booking.java

Customer.java

Account.java

‘Browse Movies’

Amy

MovieCatalog.java

Account.java

Customer.java

Booking.java

Cinema.java

Bill

Bill

Ruben

Amy

Amy

MovieCatalog.java

MovieCatalog.java

Fig. 5.3 Work context graphs

Table 5.1 Interaction type weightings

Interaction type View Update Create

Weighting factor 0.001 0.0001*D 0.01

D, absolute update delta
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number of unique entity instances directly associated with it divided by the number

of unique entity instances in the whole collaboration space. For the motivating

example the SOI ratio of Amy is 6/9 (entities in Amy’s work context/total number

of entities – two use cases and seven classes).

The concepts of interaction events combined with SOI ratio forms the basis for

deriving trace networks with semantic insight on centrality of involved entity

instances. Figure 5.3 shows three directed graphs. In general, a graph G has a set

of nodes E ¼ {e1, e2, · · ·, en} and a set of arcs L ¼ {l1, l2, · · ·, lm} which are ordered
pairs of distinct entities lk ¼ < ei, ej >. The arc < ei, ej > is directed from ei to ej.
Thus, < ei, ej > 6¼ < ej, ei >. In our usage, the graphs are three-partite since their

entities E can be partitioned into three subsets Ec, Ed and Ea (use cases, developers

and code artefacts). All arcs connect entities in different subsets.

The weight attribute of each arc is specified by the accumulative linear combi-

nation of weights gained as a result of events associated with that arc and the

sphere of influence of the entity that forms the perspective of work context. More

formally, the cumulative weight x associated with an arc < ei, ej > in response to

an event is given by (5.1), where t is the type of event (possible values shown in

table 1), s the SOI ratio of ei, and n the total number of interactions associated

with the arc < ei, ej >. Thus, the weight attributed for the arc < ei, ej > after n
interactions is based upon its previous value plus the value of the last interaction

multiplied by the SOI ratio of ei.

xðnÞ<ei;ej> ¼ xðn�1Þ<ei;ej> þ tðnÞ<ei;ej>sðnÞei (5.1)

As a further illustration of how to use events generated while developing TickX

as shown in Fig. 5.2, time-point 8 represents a view event carried out by Bill while

working on the Purchase Tickets use case using MovieCatalog.java. Subsequent to

this, time-points 1, 2, 5 and 7 are other events carried out by Amy and Bill using

Account.java within the work context of Purchase Tickets. Thus, the SOI of

Purchase Tickets at time-point 8 is 0.67 (four artefacts and developers in the

Purchase Tickets work context divided by six artefacts and developers in total).

The weight of the arc tracing MovieCatalog.java to the work context of Purchase

Tickets at time-point 8 is 0.0007. The next event involving the use of

MovieCatalog.java within Purchase Tickets is represented in time-point 13, and

the weight gained as a result of this event is 0.0006 and the cumulative weight is

0.0013. By the end of the trail in time-point 25 the relation from MovieCatalog.

java to Purchase Tickets work context has obtained a cumulative weight value of

0.0069.

The total number of context graphs in a software project depends on the unique

number of use cases, code artefacts and developers in the project. A use case may be

related to a number of code artefacts and developers, and vice versa. This produces

a complex network combining the results of different work context graphs.

A typical example of such a network for TickX project is shown in Fig. 5.4.
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5.3.2 Capturing Trace Links Between Components
Via Call Graphs

The event-based approach is suitable for capturing heterogeneous links between

stakeholders, use cases/features and associated code components. From an archi-

tectural viewpoint, there is also need to capture direct links between different

components. Here, we investigate the use of call graphs to achieve homogenous

traceability between software components. Call graphs are directed graphs that

represent calling or message passing relationships between components of a sys-

tem. From a software engineering perspective, call graphs are either dynamically

generated (at execution time) or statically generated (at compile time). The core

focus of this work is on the use of static call graphs generated by message passing

between code components. Figure 5.5 is an example of a call graph for TickX.

Figure 5.5 shows that MovieCatalog is a central component through which other

components pass or receive messages.

On the whole, a requirements traceability network is a merge of homogenous

and heterogeneous traceability links. Thus, a requirements traceability network is

a graph of system components, use cases/desired system features and stakeholders

of the system. An example of such a traceability network is shown in Fig. 5.8.

Fig. 5.4 Traceability network for TickX
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5.3.3 Centrality of Entities in Traceability Networks

In network analysis, centrality indices are normally used to convey the intuitive

feeling that in most networks some vertices or edges are more central than others

[14, 15]. A centrality index which suits the requirements traceability networks

definition is the Markov centrality, which can be applied to directed and weighted

graphs. To obtain the centrality of entities in this research, the weighted

requirements traceability network shown in Fig. 5.4 is viewed as a Markov chain.

White and Smyth [16] described a Markov chain as a single ‘token’ traversing

a graph in a stochastic manner for an infinitely long time, and the next node (state)

that the token moves to is a stochastic function of the properties of the current node.

They also interpreted the fraction of time (sojourn time) that the token spends at any

single node as being proportional to an estimate of the global importance or

centrality of the node relative to all other nodes in the graph. From the viewpoint

of this research, a Markov chain enables the characterisation of a token moving

from a developer to a selected use case as an indication of the relative importance of

the use case instance to the developer. Similarly, a token moving from a use case

instance to a code artefact indicates the importance of the artefact instance in

achieving the use case.

Centrality is calculated by deriving a transition matrix from the weighted

requirements traceability network, assuming that the likelihood of a token traversal

between two nodes is proportional to the weight associated with the arc linking the

nodes. The weights in a traceability network are then converted to transition

probability weights by normalising the weights on arcs associating entities with

a work context to one. Thus, transition probability is dependent on each arc weight

value and the total number of entities within a work context. Figure 5.6 gives the

transition matrix for TickX. The transition probability of a token from Ticket to

Browse Movies use case is 0.0339 while the reverse probability is 0.0044. Each of

the rows in the transition matrix sums to one. The algorithm and computational

processes for the derivation of transition matrix and the subsequent centrality of

entities was carried out using the Java network/graph framework (JUNG) [17].

Figure 5.8 shows a graph for TickX where the size of each entity is proportional

to its Markov centrality. This figure shows the relatively higher centrality that

MovieCatalog.java has achieved in the collaboration space.

Account

Booking

Ticket

MovieCatalog

Customer

Movie

Cinema

Fig. 5.5 Graphical

representation of a call graph

between different TickX

components
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5.3.4 Model Implementation

The implementation of a prototype envisages a scenario where the requirement

analysts can specify the use cases or features in a shared collaboration space. These

use cases can be updated or removed over the life time of the project and new ones

can be added. Developers are then able to select any use case they are interested in

implementing. Finally, the traceability model is achieved as the use case selected is

automatically traced to every update, create and view event that the developer

carried out on code artefacts while implementing that use case.

The requirements traceability approach in this chapter has been implemented as

a client server architecture, where the Eclipse IDE for each developer is a client and

the model processing logic and storage of event data is performed on the server. The

client server approach models a shared collaboration space. The client monitors

view, update and create events executed within Eclipse. When a network connec-

tion exists, event data are offloaded to the server. While there is no connection (or

a slow connection) the client will temporarily store event data locally and perform

local model processing logic to give the developer a partial view of current trace

links and their relative centrality – offline mode. The architecture is distributed

across client and server ends, and consists of four core layers: the model, event,

messaging and Rich Client Platform (RCP). The client end of each layer is plugged

into the Eclipse platform while the server end resides on an Apache Tomcat web

application server.

The model layer is the main event processing unit in the architecture. This layer

is responsible for the formation of entity work contexts and their related SOI ratios,

and also generates the centrality values for entities associated with monitored trace

links. The model layer also generates a call graph by parsing the abstract syntax tree

representing a java component in Eclipse IDE. The event layer is responsible for

capturing and archiving interaction event sequences generated within a software

Fig. 5.6 Transition matrix for TickX requirements traceability network
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project. The log.event component is the clearing centre and data warehouse of

all events generated by the project collaborators. The messaging layer carries out

asynchronous processing of request/response messages from the server. The offline.

emulator component emulates the server end functions of the model and event

layers while a developer is generating interaction events in the offline mode.

Finally, the RCP layer resides only on the client end, and provides the minimal

set of components required to build a rich client application in Eclipse.

Figure 5.7 shows a snapshot of an Eclipse view of the visualisation.rpc compo-

nent. System developers can open, activate and deactivate their use cases of interest

by using the popup menu labelled 7 in Fig. 5.7. All events generated by the

developer are traced to the work context of an activated use case. The RCP layer

is also responsible for generating visualisations of requirements traceability

networks of developers, artefacts and use cases. A system developer using the

button labelled 3 in Fig. 5.7 triggers the generation of the traceability network

shown in Fig. 5.8. The size of each node corresponds to its centrality in the

traceability network. A selected node in the network can be moved around within

the visual interface to enhance clarity of trace relations for increasingly complex

trace networks.

The workflow requires that each time a developer wants to carry out a coding

activity, they log in and activate an existing use case located in the central reposi-

tory or create a new one. For each client workstation, only one use case can be

active at a selected time, working on another use case requires that the developer

activates the new use case which automatically deactivates the previous one.

Similarly, the active code artefact is the current artefact being viewed, updated or

created. Switching to another artefact automatically deactivates the previous arte-

fact. This workflow enables cross cutting relations amongst artefacts, developers

and use cases since, over their lifetime, and as they are used to achieve different

aspects of a project, each can be associated with any number of other instances.

Fig. 5.7 Snapshot of eclipse view of visualization components

5 Understanding Architectural Elements from Requirements Traceability Networks 73



www.manaraa.com

As events generated by the developer are traced to the work context of an active use

case and artefact on the server, the centrality value of each entity instance involved

in the traceability network is recalculated.

5.4 Preliminary Study: Inferring Architectural Representations

from Traceability Networks

In this section, we aim to provide possible avenues to addressing the questions

on architectural information needs discussed in Sect. 5.2.2. We achieve this by

discussing insights from the use of traceability networks to infer architectural

representations. The discussion is based on a repository of event based

requirements traceability networks and call graphs generated during a six weeks

study involving ten software engineering students. The students were in the third

year of their Masters/Honours programme. All participants had at least 2.5 years of

object-oriented development experience using Java. All were participating in

project developing ‘Gizmoball’ – an editor and simulator for a pinball table –

working in groups of three [11]. During the study, use cases and system features

were modelled and tagged with meaningful short form descriptions or acronyms

that were easy to understand by the collaborators. Furthermore, to minimize

intrusion and closely mimic real collaboration scenarios, use cases and system

features were defined by developers and subsequently used as a basis for tasks

assignment. At the end of the 6 weeks, structured interviews were conducted with

Fig. 5.8 Trace graph for TickX
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eight of the participants (the two remaining participants were unavoidably absent).

The interviews were personalised based on the use cases/system features and code

artefacts that the participant had worked on. All data were anonymized for analysis

and presentation. Feedback from participants suggested that the tool captured

between 60–90% of the interaction events carried out over the study period. The

remaining part of this section first presents how traceability networks are used to

provide insight on architectural styles, then how they help validate initial system

decision and identify potentially overloaded components, critical bottlenecks and

information centres with ensuing architectural implications.

5.4.1 Understanding Architectural Style

Our expectation is that layouts of architectural styles are unfolded and realised with

the accumulation of trace events generated by stakeholders. Thus, if traceability

networks harvested from events associated with the achievement of system features

and desired requirements is realised, then it is also possible to infer the architectural

style used to realize the specified feature or system requirement.

Insights were obtained from our initial study on the inference of architectural

styles from event based traceability networks. Figure 5.9 demonstrates a trace-

ability network for the feature ‘File Demo’ in Gizmoball (a feature requirement that

users should be able to load gizmos from file). The figure shows the different code

artefacts that the developer ‘Tony’ used to realize the desired feature and the trace

Fig. 5.9 Revealed architectural styles associated in the achievement of gizmoball feature – ‘File

Demo’
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links between the artefacts. A visual arrangement and repositioning of the artefacts

in the traceability network reveals that a 2-tier architectural style is being used by

Tony to achieve ‘File Demo.’ Furthermore, each of the tiers reveals a possible

blackboard approach. This example demonstrates how different architectural styles

can be combined to achieve a specified system feature.

It is important to note that we do not claim here that the discovery and combi-

nation of architectural styles is trivial. While some styles such as n-tier or batch

sequential are more easily recognised from visualisation of traceability networks,

other styles such as the blackboard requires more investigation. Also, call graphs in

non trivial cases does not provide the information needed to infer styles. An example

is in cases where communication between the clients of a blackboard and the

blackboard could be via data sharing, middleware, or network communication.

Secondly, the traceability network in Fig. 5.9 demonstrates the pivotal role dis-

played by the artefacts FileHandler and GameModel in realising the architectural

style associated with File Demo. The two artefacts are responsible for the linking

of the two different blackboard styles to reveal a 2-tier architectural style. This

becomes obvious due to our use of different node sizes based on centrality, thus

demonstrating the advantage of this visualization.. Furthermore, for every new link

amongst artefacts that is subsequently introduced by collaborators to the network,

the trace network reveals corresponding adaptation that is required in the initial

architectural rationale for the associated feature of the system.

This study also reveals that traceability networks for non-trivial projects can be

overwhelming with hundreds or thousands of components. The implied archi-

tectural style used to achieve ‘File Demo’ was revealed by a simple manual visual

rearrangement of existing nodes in the network. To give support for bigger projects,

further work is needed to focus on the automatic machine learning of architectural

styles based on a given traceability network.

5.4.2 Monitoring Initial System Decision and Identifying
Critical Pointers

One of the important lessons learned from the repository of event-based traceability

networks during the 6 weeks study, is related to information that can be derived

from an entity’s centrality measures. An entity’s centrality is useful in revealing

a number of latent properties in the trace relation between requirements, code

components and the underlying system/software architecture. For instance, a high

centrality measure for a developer may suggest that they are working with many

parts of the system. Such high centrality for developers can further suggest that the

components and system features they are working on are crucial to achieving the

system and hence are central to the development process.

The study showed that stakeholders built a perception of their expected centra-

lity measures for entities in the trace network. These expectations are envisaged

76 I. Omoronyia et al.



www.manaraa.com

based on previous decisions made on achieving the system. Such expectations are

then used to monitor the state of the system. An example is the traceability network

shown in Fig. 5.10 and involving collaboration between Greg, Boris and Blair to

achieve Gizmoball. Two project stages were identified – ‘From Demo to Final’
(Translate game demo to final mode), and JUnit Tests (generate test cases for each
gizmo object). Forty five artefacts were identified as being used to achieve these

use cases. While the major responsibility of achieving ‘From Demo to Final’ was
assigned to Boris, the responsibility for JUnit Tests was mainly assigned to Blair.

A snippet from Boris demonstrating insight he obtained while navigating the

traceability network generated as a result of their collaboration (Fig. 5.10) is

shown below:

Boris: . . .If we have done ‘JUnit Test’ how come it only relates to Gizmo.java,
Square.java and GizmoModel.java. . .? Because I know that it should be looking at
virtually all of the code. . . . . .there is more work to be done in ‘JUnit Tests’

This feedback suggests that Boris was expecting JUnit Tests to have a higher

centrality in the network. He also expected the use case to be related to more code

artefacts. This is because they had decided to use test-driven development and as

such needed every code artefact to be assigned a test case. While they had agreed

and documented their decision on test driven development in their previous group

meeting, the traceability network of the current state of the project rather suggested

that there was still much work to be done to achieve their agreed objective.

Fig. 5.10 Requirements traceability network with 44 code artefacts
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If most developers tend to be associated with a high and equal measure of

centrality, then it might imply a shared code ownership development model such

as extreme programming. In this case, the architectural design rationale associated

with extreme programming practices can then be assumed. This scenario is demon-

strated in the case where the centralities of Tony, Alex and Luke in relation to the

use case ‘Build Mode’ where closely similar. Transcripts from the interview session

confirmed that the three collaborators all worked together in an interchanging

pair fashion to realise the ‘Build Mode’ feature of Gizmoball.

The initial study also showed that the requirements traceability network helped

to reveal issues that developers would easily have overlooked. For instance, inter-

view transcripts from the collaboration between Luke, Alex and Tony to achieve

the Gizmoball project suggested that they used the graph to visualize where the

bigger challenges in the system were. The centrality of nodes in traceability

networks were also used by the group to get a grasp of which use case or system

feature had changed more considerably recently or over the lifetime of the project.

Finally, it can be expected that if a requirements use case or system feature has

a high centrality relative to other use cases, then this can indicate its importance to

the development process. On the other hand it might indicate poor architectural

design and use case definition/allocation practice -for instance, the use case has

not been broken down enough or the architecture has not been well segmented.

Figure 5.11 demonstrates an example of poor segmentation and allocation of com-

ponents to system features. The feature ‘User Interface’ clearly attained a higher

centrality measure relative to other system features. Further insight on the artefacts

associated with the identified system feature revealed that it was associated with

components necessary for realizing build mode (configuration of gizmos) and play

mode (running of gizmos), which are the two main interfaces through which a user

can interact with the gizmoball game. This suggests that the ‘User Interface’ feature

could more appropriately be further decomposed into two other system features.

Fig. 5.11 Requirements traceability network involving 92 code artefacts, five system features and

three developers
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5.4.3 Lessons Learned and Limitations of Traceability Approach

An advantage of our approach is that requirements traceability links are automati-

cally harvested and constantly updated to reflect the current state of the project.

Furthermore, entities that are more likely to hold greater information about the

project are emphasized by their larger centrality values. The use of call graphs is

essential to harvesting homogenous traceability links between software com-

ponents. The focus of this work has been on the use of abstract syntax tree repre-

senting a software component to generate its static call graphs. Homogenous

traceability links were harvested for top-level static function callers.

A challenge is that the traceability network becomes increasingly cluttered as the

number of entities increases. Thus, while a selected entity from a traceability

network could be moved around within the implementation interface for visual

clarity, this was a difficult process for complex networks. To help overcome this

drawback, a Fisheye visualisation based on centrality has been implemented.

Fisheye view has been shown to be an efficient mechanism to enhance clarity for

complex visualisations with increasing number of nodes [18]. Another challenge

related to scalability is the performance overhead that arises with increasing volume

of captured developer interaction events. Finally, the use of interaction patterns to

make inference on system decision and identifying critical pointers is based only on

the small set of participants in the study. Thus, there is need for more empirical data

in subsequent studies.

An implied workflow constraint, based on the implementation of the traceability

model, is that systems analysts and developers explicitly need to be working within

the context of a selected system feature. This is achieved by activating the desired

features or use cases within the development tool. Insight obtained from the initial

study suggests that such workflow constraint can sometimes be difficult to achieve,

especially when developers have strict project schedules. Feedback from our study

shows that the explicit activation of a use case during development work is

sometimes not a primary concern of the participant, and he/she might forget to

formally carry out the use case activation processes within Eclipse IDE. Also

coding on a real project would not necessarily be for a specific use case, but

“utility” code needed by other modules such as generic data access or manipulation

routines.

5.5 Related Work

There are some methods and guidance available that help in the development and

tracing system requirements into an architecture satisfying those requirements. The

work presented by Gr€unbacher et al. [19, 20] on CBSP (Connector, Bus, System,

Property) focuses on reconciling requirements and system architectures. Gr€unbacher
et al.’s approach has been applied to the EasyWinWin requirements negotiation
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technique and the C2 architectural models. The approach taken in our work differs

from Gr€unbacher et al. as our focus is rather on the use of requirements trace-

ability approach to help collaborating developers understand the architectural

implications of each action they perform.

A closely related work is that presented on architectural design recovery by

Jakobac et al. [21–23]. The main motivation for their work is based on the frequent

deviation of developers from the original architecture causing architectural erosion –

a phenomenon in which the initial architecture of an application is (arbitrarily)
modified to the point where its key properties no longer hold. The approach assumes

that a given system’s implementation is available, while the architecturally relevant

information either does not exist, is incomplete, or is unreliable. Jakobac et al. then

used source code analysis techniques for architectural recovery from the systems

implementation. Finally, architectural styles where then leveraged to identify

and reconcile any mismatch between existing and recovered architectural models.

A distinction of our work from Jakobac et al. approach is the associations of

requirement use cases or desired system features to the subsequent tangible archi-

tectural style used to realize the feature or use case. Furthermore, our traceability

links are harvested real time as the system is being realized. Harvested traces are

subsequently used to provide developers with information about the revealed

architecture based on the work that is currently carried out. We provide pointers

to potential bottlenecks and information centres that exist as a result of an initial

architectural rationale.

There are a number of other reverse engineering approaches by which the

architectures of software systems can be recovered. For instance, the IBIS and

Compendium originating from the work of Werner and Rittel [24], presents the

capability to facilitate the management of architectural arguments. Mendonca and

Kramer [25] presented an exploratory reverse engineering approach called X-ray to

aid programmers in recovering architectural runtime information from a distributed

system’s existing software artifacts. Also, Guo et al. [26] used static analysis to

recover software architectures. Guo et al’s. approach extracted software architec-

ture based on program slicing and parameter analysis and dependencies between

the objects based on relation partition algebra. However, these approaches do not

directly focus on how such extracted architectures are related to stakeholders’

requirements of the system. Again, there are different approaches to harvesting

traceability networks. This research has focused on an event based approach for

automated harvesting of heterogeneous relations, and call graph to retrieve homo-

genous trace links between components achieving the system. Other automated

mechanisms for harvesting traceability networks include the use of information

retrieval mechanisms and scenario driven approach. Traceability networks gene-

rated from information retrieval techniques are based on the similarity of terms

used in expressing requirements and design artefacts [27–29]. The scenario-driven

approach is accomplished by observing the runtime behaviour of test scenarios.

Observed behaviour is then translated into a graph structure to indicate common-

alities among entities associated with the behaviour [30].
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Mader et al. [24] proposed an approach for the automated update of existing

traceability relations during the evolution and refinement of UML analysis and

design models. The approach observes elementary changes applied to UML

models, recognises the broader development activities and triggers the automated

update of impacted traceability relations. The elementary change events on model

elements include add, delete and modify. The broader development activity is also

recognised using a set of rules which helps in associating an elementary change as

constituent parts of intentional development activity. The key similarity between

the approach in this research and Mader et al.’s approach is the focus on

maintaining up-to-date post-requirement traceability relations. In addition, our

approach provides a perception of the centrality of traced entities.

5.6 Conclusion and Further Work

This chapter was motivated by the potential of requirements traceability to under-

standing architectural representations, responding to some typical architectural

information needs during a software project lifecycle. It has presented a technique

for the automatic harvesting of traceability networks for inferring architectural

rationale. Our technique is based on the use of event-based mechanisms to capture

heterogeneous trace links, while call graphs are used to generate homogenous

traceability links between components. The heterogeneous and homogenous trace

links were then combined to form a unified traceability network of system

components, use cases/desired system features and stakeholders (developers) of

the system. The advantage of our approach is that the relative potential and

architectural implications of each node in the traceability network can then be

determined.

An evaluation using a prototype tool implementation has demonstrated the

usefulness of our approach. Using event data captured from a student-based project

carried out over 6 weeks, we demonstrated how traceability networks are used to

provide insight on architectural styles. We also detail how the participants in our

study used the traceability tool to understand the architectural implications of the

different interaction events carried out during their project. Such architectural

implications included impact of executed events on initial system decision and

also identifying bottlenecks and information centres in the software project.

The focus of further work is twofold. First, we aim to investigate the accuracy of

centrality values. This involves understanding the effect various tasks (e.g. mainte-

nance, debugging, refactoring or simply forward engineering) on centrality of

entities. Second, for non-trivial projects, traceability networks can be overwhelm-

ingly complex. Thus, we aim to focus on enhancing the process of inferring

architectural rationale, offering a machine learning approach to supplement manual

analysis. We also plan to find ways to gain better insight from the complex

traceability networks resulting from non-trivial projects.
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Chapter 6

Tools and Techniques

P. Lago, P. Avgeriou, J. Grundy, J. Hall, and I. Mistrı́k

In software engineering, tools and techniques are essential for many purposes. They

can provide guidance to follow a certain software development process or a selected

software lifecycle model. They can support various stakeholders in validating the

compliance of the development results against quality criteria spanning from

technical non-functional requirements to business/organizational strategies.

Finally, tools and techniques may help various types of stakeholders in codifying

and retrieving the knowledge necessary for decision making throughout their

development journey, hence providing reasonable confidence that the resulting

software systems will execute correctly, fulfill customer requirements, and cost-

effectively accommodate future changes.

Tools and techniques supporting various activities in requirements engineering

[1, 2] and software architecting [3, 4] have been devised in both industry and

academia. Looking at the state of the art and practice we draw two observations.

First, independently from the software lifecycle phase they cover, most existing

tools and techniques concentrate on delivering a satisfactory solution, this being a

requirements specification (the result of engineering requirements), an architectural

model (the result of architecture design), or the implemented software system (the

result of coding). Each of us can certainly think of tens of examples of development

environments, case tools or stand-alone applications that fall in this category. It is

also true that recent research and development efforts have been and are being

dedicated to supporting the reasoning process and decision-making leading to such

solutions. Again, also in this case we can identify a number of tools aimed at

supporting various stakeholders in the knowledge they need as input (or produce as

output) to come up with the satisfactory solution mentioned above [5]. Unfortu-

nately, we see a gap not yet filled, which is in techniques and tools supporting the

actual decision-making process as such [6]. For instance, modeling notations focus

on modeling the resulting software system (the chosen solution) at different levels

of abstraction. They are insufficient to help practitioners to make logical decisions

(choices based on logical and sound reasoning) because developers can be subject

to cognitive biases [7], e.g. making decisions driven by available expertise instead

of optimally solving the problem at hand. In other words, as emphasized in [7],

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_6, # Springer-Verlag Berlin Heidelberg 2011
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we need to understand how stakeholders like analysts, architects, and developers

reason about software problems, how they make decisions and, even more impor-

tantly, how they should be trained and supported in logical thinking and better

decision making. Understanding and supporting sound decision-making is an

important topic for the research community to treat. To deliver tools and techniques

that will bridge the gap between how requirements are transformed into architecture

in a sound way, and how architecture feeds back requirements changes, researchers

and practitioners will need to work together, leverage best practices and reasoning

skills that, so far, have remained only in the heads of experts [8].

Our second observation is that many tools pose their main focus on either

requirements engineering or architecting – rarely both at the same time. This further

motivates the present book and highlights the timeliness of the contributions

included in this part.

The chapters in this part of the book address the problem of bridging

requirements and architecture. This can be addressed from two main viewpoints:

either by linking requirements artifacts and architecture artifacts in an explicit

manner, or by evaluating the links between the two worlds, or both. While Chaps.

7, 10, and 11 mainly take the first viewpoint, Chaps. 8 and 9 take both. Further, all

chapters present innovative techniques, with Chap. 9 including tool support, too.

Chapter 7 by Lawrence Chung, Sam Supakkul, Nary Subramanian, José Luis

Garrido, Manuel Noguera, Maria V. Hurtado, Marı́a Luisa Rodrı́guez, and Kawtar

Benghazi presents a technique (called GOSA, Goal-Oriented Software

Architecting) deriving architecture models from goal models. To this end, deriva-

tion rules guide developers in this derivation process, which includes how decisions

can be mapped on architecture by applying suitable architectural styles and

patterns.

Chapter 8 by Zoë Stephenson, Katrina Attwood and John McDermid propose a

technique aiding designers to progress in the design while dealing with requirement

uncertainties and risk management. Indicators are used to suggest possible risk

areas, potential uncertainties in the requirements to be realized, and finally identify

options for a lower-risk architecture solution.

Similar to Chap. 7, also Chap. 9 by Christine Choppy, Denis Hatebur andMaritta

Heisel addresses the problem of deriving architectures from requirements. How-

ever, the work presented in Chap. 9 takes a broader perspective by using context

models and problem frames to initiate and guide the derivation process. The

presented method supports both UML-based model-driven derivation and

automated validation of predefined validity conditions. The associated tool is

based on a UML profile and has been implemented on the Eclipse platform.

Chapter 10 by Luciano Baresi and Liliana Pasquale focuses on the problem of

controlling dynamic adaptation requirements (characterizing service-oriented

systems) next to traditional functional and non-functional requirements. The

presented approach uses adaptation rules to govern runtime service adaptation to

changing requirements. This introduces an innovative way to look at adaptation as

the instrument to bridge the gap between requirements and architecture, for the

specific domain of SOA.
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Last but not least, Chap. 11 by Len Bass and Paul Clements delves into business

goals as well-known source of requirements but seldom captured in an explicit

manner. As a consequence, system architectures end up being misaligned with such

business goals, potentially leading to IT project failures. The proposed technique

includes a reference classification of business goals as tool to drive elicitation, and a

method to help architects in eliciting business goals, relevant associated quality

requirements and architecture drivers.
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Chapter 7

Goal-Oriented Software Architecting

Lawrence Chung, Sam Supakkul, Nary Subramanian, José Luis Garrido,

Manuel Noguera, Maria V. Hurtado, Marı́a Luisa Rodrı́guez, and Kawtar

Benghazi

Abstract Designing software architectures to meet both functional and non-

functional requirements (FRs and NFRs) is difficult as it oftentimes relies on the

skill and experience of the architect, and the resulting architectures are rarely

derived directly from the requirements models. As a result, the relationships

between the two artifacts are not explicitly captured, making it difficult to reason

more precisely whether an architecture indeed meets its requirements, and if yes,

why. This chapter presents a goal-oriented software architecting approach, where

FRs and NFRs are treated as goals to be achieved, which are refined and used to

explore achievement alternatives. The chosen alternatives and the goal model are

then used to derive, using the provided mapping rules, a logical architecture, which

is further mapped to a final concrete architecture by applying an architectural style

and architectural patterns chosen based on the NFRs. The approach has been

applied in an empirical study based on the 1992 London ambulance dispatch

system.

7.1 Introduction

Software architecture (SA) defines the structure and organization by which system

components interact [22] to meet both functional and non-functional requirements

(FRs and NFRs). However, multiple architectures can be defined for the same FRs,

each with different quality attributes. As a result, software architecting is often

driven by quality or NFRs [15].

However, designing software architectures to meet both FRs and NFRs is not

trivial. A number of architectural design methods have been introduced to provide

guidelines for the three general architectural design activities [15]: (1) architectural

analysis, an activity that identifies architectural significant requirements (ASRs);

(2) architectural synthesis, an activity that designs or obtains one or more candidate

architectures; and (3) architectural evaluation, an activity that evaluates and selects

an architecture that best meets the ASRs.

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_7, # Springer-Verlag Berlin Heidelberg 2011
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These methods provide broad coverage of architectural design, many of which

intentionally leave the modeling details to the architect on how to transition from

requirements models to architectural models [1, 3]. As a result, software architecting

often relies on the architect’s skill, experience, and the collaboration with other

stakeholders, to arrive at one or more candidate architectures, a task that is difficult,

especially for those unfamiliar with the application domain. Additionally, the

resulting architecture oftentimes lacks explicit traceability with the requirements

models, making it difficult to reason precisely whether an architecture indeed

meets its FRs and NFRs, and if yes, why.

To alleviate this difficulty, this chapter presents a goal-oriented software

architecting (GOSA) approach to systematically designing architectures from FRs

and NFRs. In this approach, FRs and NFRs are treated as goals to be achieved,

which are refined and used to explore achievement alternatives. The chosen

alternatives and the goal model are used to derive a logical architecture using the

provided mapping rules. The logical architecture is further mapped to a concrete

architecture by applying an architectural style and architectural patterns chosen

based on the tradeoffs concerning system NFRs. The goal model produced during

this process captures the relationships between the requirements and the resulting

SA, as well as the design rationale.

This approach has been applied in an empirical study based on the 1992 London

ambulance dispatch system. The results showed that the approach could be useful

for the architectural synthesis activity, particularly for the information systems

domain.

The rest of the chapter is structured as follows. Section 7.2 presents the GOSA

approach, followed by an empirical study report in Sect. 7.3. Section 7.4 discusses

related work, which is followed by a summary and future direction.

7.2 The Goal-Oriented Software Architecting (GOSA)

Approach

The goal-oriented software architecting (GOSA) approach is at high-level a three-

step process. A goal-oriented requirements analysis is first performed to explore

and capture design rationale to arrive at desirable means to achieve FRs and NFRs.

The results are then used to derive a software architecture in two steps: deriving

a logical architecture from FRs, then deriving a concrete architecture from the

logical architecture and NFRs.

The process for the GOSA approach is shown in Fig. 7.1 for simplicity as a top-

down process, but in practice it is an iterative and interleaving process where any

previous step may be repeated in any order as necessary.
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7.2.1 Step 1: Goal-Oriented Requirements Analysis

In this step, FRs are captured as hardgoals and NFRs as softgoals to be achieved.

FRs are treated as hardgoals as they generally have clear-cut achievement criteria.

For instance, a hardgoal of having an ambulance dispatched is satisfied when an

ambulance has been dispatched, an absolute proposition. On the other hands, NFRs

are treated as softgoals in this approach since many of them have less clear-cut

definition and achievement criteria. For instance, it is difficult to precisely define

security without using other NFR terms, such as confidentiality and integrity, which

in turn will have to be defined. It is also difficult to determine concrete criteria for

security since it may be unacceptable to define certain number compromises per

a period of time while on the other hand it is impossible to guarantee that a system

will never be compromised. Therefore, oftentimes, a softgoal can only be satisficed,
referring to the notion of “good enough” satisfaction [6].

To achieve the goals, alternatives are explored, evaluated, and selected based on

tradeoff analyses in consideration of NFRs that are originally posted and those

identified as side-effects [6, 25, 33]. Each selected means is then assigned to be

fulfilled by an external agent or the system under development [11].

1.1.1. Define a 
domain model

1.2.1 Define 
hardgoals

1.3.1 Define 
softgoals

1.2.2 Explore 
alternative tasks

1.3.2 Explore
architectural

decisions

1.2.3 Select
tasks

1.3.3 Select
architectural 

decisions

1.2.4 Assign agent 
responsibilities

2.1 Define 
goal-entity relationships

2.2 Derive a logical 
architecture

3.2 Apply 
architectural 

decisions

3.1 Refine
component 

dependencies

1. Goal-Oriented Requirements Analysis

2. Logical Architecture Derivation 3. Concrete Architecture Derivation

1.1 Domain model 1.2 Hardgoals 1.3 Softgoals

Fig. 7.1 The goal-oriented software architecting process
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Using an ambulance dispatch system as an example, Fig. 7.2 shows a partial goal

model that may be produced during the goal-oriented requirements analysis step.

Parts of the model are omitted for brevity where denoted by “. . .”.
On the left hand side of Fig. 7.2, corresponding to step 1.2.1 in Fig. 7.1,

Ambulance arrived at scene is the ultimate hardgoal of the system, it is refined

using an AND-decomposition to four sub-goals, including Ambulance tracked, a

goal that is further AND-decomposed to Ambulance status tracked and Ambulance

location tracked sub-goals. Each sub-goal can be in turn further decomposed as

necessary until the goal is sufficiently refined and agreeable to the stakeholders.

Corresponding to step 1.2.2, each leaf-goal is then used as a goal to explore

alternative tasks needed to operationalize the goal. For instance, Ambulance loca-

tion tracked goal may be achieved by either Voice call to report the location or

Automatically track the location alternative tasks. Corresponding to step 1.2.3, the

latter alternative is chosen for its more favorable contribution towards Response

time softgoal, as its Make/++ contribution towards the goal is preferred to the Hurt/-

contribution of the former alternative.

Consider the right hand side of the goal model for a moment. Corresponding to

step 1.3.1, Quality [Ambulance arrived at scene] softgoal represents the overall

desirable quality in the context of the FRs as represented by the root hardgoal.
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Fig. 7.2 A partial goal model for an ambulance dispatch system
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Softgoals may also be defined in the context of other FRs representations,

such as use cases [29]. Similar to hardgoals, each softgoal may be AND- or OR-

decomposed to sub-softgoals. In this example, the root softgoal is AND-

decomposed to sub-softgoals, including Response time and Resilience.

Each leaf softgoal is then used as a criterion for exploring and choosing among

alternatives (step 1.3.1 and 1.3.2). For example, Response time is a criterion for

choosing between Voice call to report the location and Automatically track the location

tasks. Similarly, Resilience is used as a goal to explore and select between Primary-

backup and Clustering architectural alternatives. Primary-backup alternative is

chosen, as part of step 1.3.3, for a better side-effect towards Development time as

its Hurt/- contribution is preferred to the Break/- - contribution of Clustering

alternative. The selected Primary-backup alternative is subsequently used as

a goal to explore two more specific architectural alternatives: Hot standby and

Passive standby alternatives [12], where the former is chosen for a better side-

effect towards Response time.

Once achievement means have been selected, they are analyzed for impacts on

the softgoals. For example, Hot standby alternative is labeled as Satisficed (denoted

by a check mark) to represent the selection. The label is then propagated to a

Satisficed label on the Primary-backup softgoal over a Make/++ contribution, and

subsequently a Satisficed label on the Resilience softgoal. If all sub-goals of the

Quality root softgoal were Satisficed, the root’s label would be derived to be

Satisficed over the AND-decomposition. But in this case, Development time sub-

goal is Weakly Denied by the propagation of Primary-backup’s Satisficed label over

a Hurt/- contribution. The architect must decide whether having Development time

weakly denied is acceptable. If it is, he or she may manually label the Quality

softgoal as Satisficed or Weakly Satisficed as appropriate; otherwise, the architect

may select different existing alternatives or explore additional alternatives until the

root softgoal is deemed sufficiently satisficed.

Each selected means is then assigned to be fulfilled by an agent in the environ-

ment or the system under development [11] (step 1.2.4,). For example, Identify

current location task is assigned to AVLS external hardware, while Record current

location task and Hot standby architectural decision are assigned to be fulfilled by

Ambulance Dispatch System, the system under development.

In addition to goal identification and refinement, domain entities are also dis-

covered during the requirements analysis [11]. For instance, in corresponding to

step 1.1.1, the notion of ambulance is discovered when Ambulance arrived at scene

goal is defined. These entities are captured, refined, and related in a domain model,

such as that shown in Fig. 7.3.

7.2.2 Step 2: Logical Architecture Derivation

Components in a software architecture are generally defined using either

object-oriented or function-oriented approach. For instance, “incident_mgr” and
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“dispatch_mgr” [23] are examples of object-oriented components where the com-

ponent names reflect key domain entities, while “Alphabetizer” and “Circular

Shift” [28] are examples of function-oriented components where the component

names reflect key functions.

In the GOSA approach, we take the object-oriented approach to derive

components in the logical architecture. A logical architecture defines architectural

components and their inter-dependencies that are derived from hardgoals

representing the FRs and their relationships with domain entities.

Since the components would be too fined grain if each domain entity is assigned

a component, only significant entities are assigned a component. A domain entity is

considered significant if it is used or changed as a result of goal fulfillment, which is

determined from the relationship between the entity and hardgoals.

7.2.2.1 Step 2.1: Define Hardgoal-Entity Relationships

A relationship between a hardgoal and a domain entity is defined in terms of the role

that the goal plays in relation to the entity. Two roles are determined using the

following rules:

R1: Producer Goal. A hardgoal is considered a producer goal of a domain entity if

the fulfillment of the goal necessitates changes to the domain entity. This

relationship is represented by a uni-directional line from the producer goal

towards the domain entity.

R2: Consumer Goal. A hardgoal is considered a consumer goal of a domain entity

if the fulfillment of the goal necessitates use of information from the domain

Fig. 7.3 A domain model for an ambulance dispatch system
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entity. This relationship is represented by a uni-directional line from the domain

entity towards the consumer goal.

Examples of the goal-entity relationships are depicted in Fig. 7.4 where Ambu-

lance location tracked is a producer goal and Resource assigned a consumer goal of

Resource entity.

7.2.2.2 Step 2.2: Derive a Logical Architecture

This step defines architectural components and their inter-dependencies using the

goal model and goal-entity relationships. Two kinds of components are derived:

process and interface components. A process component provides services related

to the corresponding entity, while an interface component handles the communica-

tion between the system and an external entity. The services provided by a compo-

nent are represented by component operations. Process components and their

operations are determined by the following rules:

R3: Process Component Derivation.

R3.1: Define a process component using nomenclature “< domain-entity > Mgr”

for each domain entity that is associated with a producer and a consumer

hardgoals.

ResourceMgr

ResourceMgr

+ recordCurrentLocation ()
+ identifyClosestResource ()
+ reserveResource ()

R3.1

R3.2

R1:
producer 
goal

R2:
consumer
goal

Ambulance  
tracked

Resource 
assigned

Resource

Automatically 
track location

Assign 
resource

Record 
current 
location

Identify 
closet 

resource
Reserve 
resource

Ambulance 
Dispatch 
System

...

Fig. 7.4 Examples of rule R1, R2, and R3 applications
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R3.2: For each derived process component, define an operation for each selected

task that is assigned to the system under development.

Figure 7.4 shows examples of rule R1, R2, and R3 applications. Here,

ResourceMgr process component is derived because Resource entity is asso-

ciated with both Ambulance tracked as a producer goal and Resource assigned

as a consumer goal. Three operations, including recordCurrentLocation, identify-

ClosestResource, and reserveResource operations, are derived from the three tasks

assigned to Ambulance Dispatch System, the system under development.

The rules for determining interface components and their operations are:

R4: Interface Component Derivation.

R4.1: Define an interface component using nomenclature “< external-agent >
Interface” for each external agent that is assigned to carry out one or more tasks.

R4.2: For each derived interface component, define an operation for each task that

is assigned to the agent.

Figure 7.5 shows an application of rule R4, where AVLSInterface component is

defined to handle the communication with the Automated Vehicle Location System

(AVLS) external hardware. The component has an operation, identifyCurrent-

Location, which is derived from the only task assigned to the AVLS external agent.

Given the two kinds of components, two kinds of inter-component inter-

dependencies can be derived: process-process and process-interface component

dependencies. Process-process component dependencies are determined using the

following rules:

R5: Process-Process Component Dependency Derivation. Define a component

dependency between process component A and process component B where A is

assigned to be the depender and B the dependee of the relationship if there is

a hardgoal that is both a producer goal of A’s entity and B’s entity.

AVLSInterface

+ identifyCurrentLocation ()

R4.1 AVLSInterface

R4.2

Ambulance 
location tracked

Automatically 
track location Resource

identifyCurrent
Location

AVLSFig. 7.5 An example of rule

R4 application
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Figure 7.6 shows an application of rule R5 where ResourceMgr and DispatchMgr

are derived using R3.1, and the dependency between them is derived using R5

because Resource assigned is both a producer goal of Dispatch entity and a

consumer goal of Resource entity.

The rules for determining process-interface component dependencies are:

R6: Process-Interface Component Dependency Derivation. Define a component

dependency between process component A and interface component B if a task

of the producer goal or the consumer goal related to A is assigned to an external

agent being communicated via component B.

R6.1: Process component A is assigned to be the depender of the dependency if the

goal of the assigned task is a producer goal.

R6.2: Process component A is assigned to be the dependee of the dependency if the

goal of the task is a consumer goal.

Figure 7.7 shows an application of rule R6. Here, a dependency is defined

between ResourceMgr process component and AVLSInterface interface component

as Identify current location, a task of Ambulance tracked goal is assigned to AVLS

agent (rule R6). For this dependency, ResourceMgr is considered the depender

since Ambulance location tracked is a producer goal of the ResourceMgr component

(rule R6.1).

7.2.3 Step 3: Concrete Architecture Derivation

In this step, the logical architecture is refined using an architectural style to map

component dependencies to concrete connectors and using architectural patterns

to realize the architectural decisions made during the goal-oriented require-

ments analysis. The notions of architectural styles and patterns are often used
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Fig. 7.6 An example of rule
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interchangeably [17] to achieve NFRs [13]. But in this approach, they are used for

two subtle different purposes: a style is used to affect how all components interact

to achieve the desirable quality attributes [28] while a pattern is used to affect other

aspects of the architecture in a less predominant manner, for instance to achieve

NFRs such as concurrency and persistency [4].

7.2.3.1 Step 3.1: Refine Component Dependencies

In this step, each component dependency in the logical architecture is refined using

an architectural style that is chosen from a qualitative goal-oriented tradeoff

analysis. Figure 7.8 shows a goal-oriented tradeoff analysis to select among several

styles, including Abstract Data Type, Shared Data, Implicit Invocation, and Pipe &

Filter, in consideration of Comprehensibility, Modifiability, Performance, and Reus-

ability softgoals [8].

The selection is made by evaluating each alternative in turn to determine

whether its overall impacts on the softgoals are acceptable. An impact on a softgoal

is determined by applying the label propagation procedure [7]. For example,

Abstract Data Type is labeled “satisficed” (denoted by a checkmark) to represent

the selection. The label is propagated to “Weakly-Satisficed” (Wþ) label on Time

performance softgoal over the Help/þ contribution, while the same label is

propagated over a Break/� � contribution to “denied” label (denoted by a cross)

on Extensibility [Function]. In this example, Abstract Data Type provides the most

acceptable compromises based on the weakly satisficed labels (denoted by Wþ) on

more critical softgoals (Time performance, Modifiability [Data rep] and Modifiability

[Function]), and the weakly denied labels on less critical softgoals (Modifiability

[Process], Extensibility [Function], Space performance).

The selected architectural style is then applied to each component dependency in

the logical architecture. Figure 7.9 shows the application of abstract data type and
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track location
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Fig. 7.7 An example of rule R6 application
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pipe & filter architectural styles, using adapted representations of architectural

styles in UML [17].

7.2.3.2 Step 3.2: Apply Architectural Decisions

The architectural decisions made during the goal-oriented analysis are applied to the

logical architecture in this step. For instance, the decision to use hot-standby backup to

achieve Resilience softgoal in Fig. 7.2 may be applied by using a primary-backup

architectural pattern. Figure 7.10 shows the resulting system architecture where two

copies of the system (DispatchSystem.1 andDispatchSystem.2) are operational where

both simultaneously receive inputs from external entities (CallTaker and ALVS). If the

primary copy fails, the hot-standby copy would immediately take over as the new

primary. The failed copy would then be repaired and brought back to operation and

Modifiability 
[System]

Modifiability 
[Process]

Modifiability 
[Data Rep]

Modifiability 
[Function]

Extensibility 
[Function] Updatability 

[Function]

Deletability 
[Function]

Performance

Space 
Performance

Time 
Performance

Reusability

Comprehensibility

Coherent Simplicity

Shared Data Abstract 
Data Type

Implicit 
Invocation

Pipe & Filter

+

– – – –
–

+
++

++ ++
– –

+

– –

+
–

+

– –

– –

– –

++

+++

++ – –

+

Fig. 7.8 A goal-oriented tradeoff analysis for selecting a desirable architectural style

Fig. 7.9 Applying the abstract data type style (a) and the pipe & filter style (b) using UML
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marked as the new hot-standby copy. If multiple patterns are considered, they may be

chosen using a goal-oriented tradeoff analysis similar to that shown in Fig. 7.8.

7.3 An Empirical Study: The London Ambulance

Dispatch System

The goal-oriented software architecting (GOSA) approach has been applied to the

1992 London ambulance dispatch system [26] in an empirical study, a controlled

experiment performed by the authors using publicly available case reports (e.g. [26]

and [20]), with the following objectives: (1) to study how the approach can be used

to systematically design from requirements a reasonable candidate software archi-

tecture, and (2) to study how the approach helps capture and maintain relationships

between requirements and the resulting software architecture as well as the design

rationale.

7.3.1 Description of the Case

The failure of the 1992 London Ambulance Service’s computer-aided dispatch

system arguably caused several deaths soon after its deployment, from failing to

deliver emergency care in time, including an 11-year old girl dying from a kidney

condition after waiting for an ambulance for 53 min and a man dying from a heart

attack after waiting for 2 h [10].

The primary FRs of the system were to support the ambulance dispatch service,

including call handling, resource identification and dispatch, resource mobilization,

and resource management and tracking [26]. More importantly, the primary driver

for the computer-aided dispatch system was to comply with a new response time

regulation that required an ambulance to be dispatched in 3 min after an emergency

call is received, and arrived at the scene in 11 min, for a total of 14 min. In addition,

the system was also required to meet throughput, ease-of-use, resilience, flexibility,

development time and cost NFRs [26].

Fig. 7.10 The system

architecture after a hot-

standby pattern has been

applied
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7.4 Results

Figure 7.11 shows the final software architecture in UML, which consists of 10

components and 10 connectors. The components are four process components

whose name ending with “Mgr” suffix, and six interface components whose name

ending with “Interface” suffix. The connectors are represented by 10 coupled UML

“provided” and “required” interfaces: three process-to-process component

connectors (those among RequestMgr, IncidentMgr, and DispatchMgr) and seven

process-to-interface component connectors (those connecting CallTakerInterface,

ResourceAllocatorInterface, AVLSInterface, MapServerInterface, StationPrinter-

Interface, and MDTInterface). The relationships between the requirements and

resulting architecture are the relationships among the elements in the goal model

(hardgoals, softgoals, and domain entities), the logical architecture (components,

component dependencies), the concrete architecture (components and connectors),

and the rules used, as described in Sect. 7.2.

7.4.1 Threats to Validity

Based on the case study research [19], threats to validity of the empirical study are

discussed in this section in terms of construct validity, internal validity, external

validity, and experimental reliability.

Fig. 7.11 The final software architecture for the empirical study
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7.4.1.1 Construct Validity

Construct validity refers to the establishment of correct operational measures for

the concepts being studied. We determined the reasonableness of a resulting

architecture by comparing its overall structure with an independently designed

architecture using the following criteria: (1) semantically compatible components,

(2) semantically compatible connectors. The independent architecture was used as

an experimental control to represent the status quo [19]. For this study, we used an

architecture designed by the ACME research group for the same London ambu-

lance dispatch system [23], where a visual representation of the architecture [34] is

shown in Fig. 7.12.

A comparison between the two architectures shows several similarities. For

criterion i, both architectures appear to use the object-oriented approach for defin-

ing components. Both also have similar process and interface components. For

instance, CallMgr, IncidentMgr, ResourceMgr, and DispatchMgr in the GOSA archi-

tecture appear to be semantically similar to call_entry, incident_mgr, resource_mgr,

and dispatcher components in the ACME architecture. Additionally, MapServer-

Interface appears to be the same interface component as the map_server compo-

nent. For criterion ii, both consist of several similar component connectors,

including the connector between CallMgr and IncidentMgr, and that between

ResourceMgr and DispatchMgr, which exist in both the GOSA architecture and

the ACME architecture.

7.4.1.2 Internal Validity

Internal validity or the causal relationships between the input and output of the

GOSA process are illustrated by the artifacts produced from applying the GOSA

Fig. 7.12 An independently

designed control architecture

for the London ambulance

system
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process. The process and artifacts shown in Sect. 7.2 illustrate the step-by-step

transition of goals to alternatives, to a logical architecture, and finally to a concrete

architecture through model refinements and rule applications. Through this detailed

process, each element in the architecture is traceable back to the source FRs and

NFRs, along with the design rationales.

7.4.1.3 External Validity

External validity or the domains to which the study’s findings can be generalized

are suggested by the application domain in the study. The London ambulance

dispatch system may be considered a typical information system where the system

interacts with the users and manipulates business objects. To help support this

observation, we have also applied the GOSA approach to two other information

systems: an airfare pricing system and an catering pricing system. These studies

also produced architectures with similar architectural characteristics. However, the

results from those supplemental studies were inconclusive due to the lack of control

architectures as they were proprietary software systems. For other application

domains, such as environmental control application domains where the system

controls the environment based on pre-defined rules, this study neither confirms

nor invalidates the applicability of the GOSA approach.

7.4.1.4 Experimental Reliability

With respect to the experimental reliability or the ability to repeat the study, the

main factor affecting the reliability appears to be the subject who carries out the

study. Any subject applying the GOSA should produce architectures with similar

characteristics. However, the goal-oriented analysis skill of the subject and his

or her subjectiveness in making tradeoff analyses may affect the resulting

architectures. The possible variations are due to the subjectiveness in interpreting

textual subject matter literature since text is generally imprecise by nature and is

oftentimes ambiguous, incomplete, or conflicting. As a result, it is difficult for

different subjects to arrive at the same interpretation. Similarly, NFRs by nature can

be subjective and oftentimes conflicting. Different subjects may arrive at different

tradeoff decisions. Such unreliability elevates the need for explicit and (semi)

formal representation of requirements, for instance using a goal-oriented approach,

so that the interpretation and decision making are more transparent and agreeable

among the stakeholders. To help achieve reliable and repeatable goal-oriented

analysis, patterns of goals, alternatives, and their tradeoffs may be used for similar

or applicable domains. [30].
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7.5 Related Work and Discussion

As a goal-oriented method, the GOSA approach adopts and integrates three well

known goal-oriented methods in a complementary manner: the i* Framework [33]

for analyzing FRs, the NFR Framework [7] for analyzing NFRs, and KAOS [11] for

representing agent responsibility assignments. The GOSA approach further extends

the three underlying methods beyond the goal-oriented requirements engineering to

goal-oriented software architecting.

Deriving software architectures from system goals has been proposed by an

extension of the KAOS method [32] and the Preskiptor process [5], the extended

KAOS being the most closely related to our approach. At high-level, both the

extended KAOS and our GOSA approaches capture requirements as goals to be

achieved, which are then used to derive a logical architecture and subsequently

a concrete architecture. However, the goal model in the extended KAOS approach

is more formal and is mainly concerned with functional goals while the goal

model in the GOSA method deals with both functional and non-functional goals.

Non-functional goals are used in the GOSA method for explicit qualitative

tradeoff analysis. Furthermore, the GOSA method derives process and interface

components, and their operations from the goal model.

A software architecture is generally defined with a number of architectural

constituents, including components, connectors, ports, and roles. In the GOSA

approach, components and connectors are derived from the goal model and the

goal-entity relationships using the mapping rules, architectural style and pattern

applications. Since component ports and roles are not generally determined directly

by requirements, they are therefore defined in the patterns and are not derived from

the requirements.

A number of industrial methods have been used to support various architectural

design activities: architectural analysis, synthesis, and evaluation activities.

Examples of methods that support the architectural synthesis include the Attribute-

Driven Design (ADD) method [1], the RUP’s 4 þ 1 Views [21], the Siemens’s

Four-Views (S4V) [16], the BAPO/CAFCR method [15], the Architectural Separa-

tion of Concerns (ASC) [27], and The Open Group Architecture Framework

(TOGAF) [31] methods. Many of these methods provide high-level notation-

neutral processes with common features such as scenario-driven and view-based

architectural design. Our GOSA approach shares a number of features. For

instance, similar to the ADD method, the GOSA approach explores and evaluates

different architectural tactics and uses styles and patterns during the architectural

design. However, the alternatives are represented and reasoned about more for-

mally using goal-oriented modeling and analysis.

For the architectural evaluation activity, many methods use scenarios to provide

context for the architecture evaluation. These methods include Scenario-Based

Architecture Analysis Method (SAAM) [18], the Architecture Trade-Off Analysis

Method (ATAM) method [9], and the Scenario-Based Architecture Reengineering

(SBAR) method [2]. In these approaches, NFRs are generally defined by metrics to
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be achieved by the architecture. For example, performance is defined in terms of

response time in seconds and availability in terms of mean time to repair/recovery

(MTTR) in minutes [1]. This quantitative-based evaluation can be considered

a product-oriented approach where the achievement is determined by measuring

an executable artifact, such as a prototype, a simulation model, or a completed

system, against pre-determined metrics. As a goal-oriented approach, the GOSA

approach, on the other hand, is considered a process-oriented approach [24] where

early decisions are evaluated against softgoals using qualitative reasoning. The two

approaches can be used in a complementary manner where architectural decisions

may be qualitatively evaluated early during the development process, which are

then confirmed by quantitative measurements of an executable artifact that realizes

the selected decisions [14].

In addition to designing the architecture of individual systems, the GOSA

approach can potentially be used for designing the architecture of systems-of-

systems. For instance, the GOSA approach may be used to design the architecture

of the top-most level system where its components represent other systems

involved. The approach is then recursively used to design the architecture of each

sub-system and their respective sub-systems or components.

7.6 Conclusion

This chapter presents a goal-oriented software architecting (GOSA) approach to

designing software architectures from requirements models, which also captures

the relationships between the two artifacts as well as the design rationale used

during the architecting process. In this process, FRs and NFRs are represented as

hardgoals and softgoals respectively. They are refined and used to explore and

select alternative tasks and architectural decisions. The goal model and the goal-

entity relationships are then used to derive a logical architecture, consisting of

components and inter-component dependencies. The logical architecture is then

further mapped to a concrete software architecture and a system architecture by

applying an architectural style and architectural patterns chosen from the tradeoffs

concerning system NFRs. The approach has been applied in an empirical study that

showed that the approach could be useful for the information systems domain.

Future works include independently conducted case studies to confirm the findings

from our controlled empirical study, and to validate whether the approach is also

applicable for other application domains and systems-of-systems situations. Addi-

tionally, a tool support is needed to confirm and further study the strengths and

weaknesses of the approach.
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Chapter 8

Product-Line Models to Address Requirements

Uncertainty, Volatility and Risk

Zoë Stephenson, Katrina Attwood, and John McDermid

Abstract Requirements uncertainty refers to changes that occur to requirements

during the development of software. In complex projects, this leads to task uncer-

tainty, with engineers either under- or over-engineering the design. We present

a proposed commitment uncertainty approach in which linguistic and domain-

specific indicators are used to prompt for the documentation of perceived uncer-

tainty. We provide structure and advice on the development process so that

engineers have a clear concept of progress that can be made at reduced technical

risk. Our contribution is in the evaluation of a proposed technique of this form

in the engine control domain, showing that the technique is able to suggest design

approaches and that the suggested flexibility does accommodate subsequent

changes to the requirements. The aim is not to replace the process of creating

a suitable architecture, but instead to provide a framework that emphasises con-

structive design action.

8.1 Introduction

In a conventional development process, a requirements writer creates an expression

of his needs, to be read by a requirements reader. The requirements reader then

creates a system to meet that need [1]. A particular problem faced by developers is

the gradual squeezing of implementation time as deadlines become tighter and

requirements are not fully agreed and validated until late in the development

programme. Our experience with product-line modelling and architecture suggests

that an uncertain requirement may be treated as a miniature product line, albeit one

that varies over time rather than between different products. In the ideal case, this

will derive flexibility requirements that help to accommodate subsequent fluctua-

tion in the requirements, allowing the engineer to commit to the design even though

the requirements are still uncertain. In this chapter, we take inspiration from

uncertainty analysis, product-line engineering and risk management to synthesise
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an approach that provides insight into the flexibility needs of implementations

driven by uncertain requirements.

Our approach, which is described in detail in Sect. 8.2 below, has two stages.

Firstly, we use a combination of lightweight linguistic indicators and domain

expertise to identify potential uncertainties in natural-language requirements, either

in terms of the technical content of a requirement or of its precise meaning. We then

use these uncertainties as the basis of a process of restatement of the original

requirement as one or more ‘shadow’ requirements, which take account of changes

which might arise in the interpretation of the original as the development proceeds.

Each ‘shadow requirement’ is tagged with an indication as to the likelihood of its

being the actual intended requirement. System design can then proceed with

a clearer understanding of the risk of particular implementation choices. We refer

to the approach as ‘commitment uncertainty’, to reflect the trade-off between

requirements uncertainty and the need for (a degree of) design commitment at an
early stage in the development process.

Our claim is that our particular choice of techniques provides up-front infor-

mation about flexibility needs such that the resulting implementation is better able

to cope with the eventual agreed requirements. Our contribution includes details

of the choice of techniques, their specialisation and evaluation of the effectiveness

of the resulting approach.

The remainder of the introduction provides a review of the areas of literature

that inspire this work. Then, in the following section, we describe our approach

to commitment uncertainty, followed by an evaluation of the approach in two

separate studies.

8.1.1 Product-Line Engineering

Product-line engineering enables the provision of flexibility constrained to a parti-

cular scope [2]. The principal processes of product-line engineering are domain

engineering, in which the desired product variation is modelled and supported

with reusable artefacts and processes; and application engineering, in which the

predefined processes configure and assemble the predefined artefacts to create

a particular product [3]. The ability to rapidly create products within the predefined

scope offsets the up-front cost of domain engineering, but it relies on a high degree

of commonality between products [4] to reduce the size and complexity of the

product repository.

Several of the technologies specific to product-line engineering are useful when

dealing with uncertainty. Feature models [5] provide a view of the configuration

space of the product line, documenting the scope of available products and

controlling the configuration and build process. These models present a simple

selection/dependency tree view of the underlying product concepts [6]. Topics in

feature modelling include staged configuration [7] in which a process is built

around partially-configured feature models that represent subsets of the available
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products, and feature model semantics [8] in which the underlying propositional

structure of the feature model is examined. The former is useful in uncertainty

analysis as it provides a way for the design to track the gradual evolution of changes

to the requirements; the latter is problematic because it generally normalises the

propositional selection structure into a canonical form. Such a normalised model

could make it difficult to precisely identify and manage variation points that exist

because of uncertainty.

Domain-specific languages [9] often complement feature models; while a fea-

ture tree is good for simple dependencies and mutual exclusions, a domain-specific

language is better able to cope with multiple parameters with many possible values.

Domain-specific languages are typically used along with automated code genera-

tion and assembly of predefined artefacts [10]. Given suitable experience and tool

support for small-scale domain-specific languages, it may be feasible to use such

approaches in making a commitment to a design for uncertain requirements.

In addition to these techniques, some more general architectural strategies are

often used with product-line engineering, and would be suitable candidates for

design decisions for uncertain requirements. These include explicitly-defined

abstract interfaces that constrain the interactions of a component; decoupling of

components that relate to different concerns; and provision of component parameters

that specialise and customise components to fit the surrounding context [11].

8.1.2 Requirements Uncertainty and Risk

Requirements uncertainty is considered here to be the phenomenon in which the

requirement as stated is believed by the requirements reader not to be the require-

ment that is intended by the requirements writer; that once the system is delivered,

the requirements writer will detect the discrepancy and complain about the mis-

match [12]. In dealing with requirements uncertainty, approaches take into account

both organisational and linguistic concerns.

Uncertainty is considered to be present throughout a project, and presents a risk

both to that project and to the organisation as a whole [13]. To deal with uncertainty

from an organisational perspective, it must be identified, managed and controlled

(see e.g. Saarinen and Veps€al€ainen [14] for a more complete overview of risk

management in this area) in tandem with other technical and programme risk

activities. More pragmatically, in a study of U.S. military projects, Aldaijy [15]

identified a strong link between requirements uncertainty and task uncertainty. That

is, when faced with the prospect that the requirements may change, engineers often

lack clarity on what tasks to perform.

Techniques to deal with uncertainty vary widely in their nature and scope.

A significant body of work is aimed at linguistic techniques, to control language

and identify problems in ambiguous requirements for feedback to the requirements

writer [16, 17]. From this literature, we recognise the important trade-off between

the “weight” of the language analysis and the effort involved in obtaining useful
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information, as evidenced by the use of lightweight techniques that only use

a shallow parse of the requirements [18] or targeted techniques that ignore

ambiguities that are easy to detect in favour of highlighting those that are difficult

to work with [19].

Once uncertainty is detected, it should at a minimum be recorded, e.g. as

a probability distribution [20]. While uncertainty remains, there is an increased

possibility of the requirements being inconsistent; this should be respected and

maintained throughout the lifecycle and only forced to be resolved when necessary

[21]. A further step is to use the information in negotiating for clearer requirements

with the requirements writer, a strategy that is coloured by the project’s conceptua-

lisation of the requirements writer (e.g. as explained by Moynihan [22]).

8.2 The Commitment Uncertainty Process

Our approach to requirements uncertainty assumes that it is possible to explicitly

analyse requirements and context for potential future changes and provide insight

into the design phase so that the design accommodates those changes. In this

respect, the approach is identical to a conventional product-line engineering

approach (albeit with temporal variation rather than population variation) and is

similar in its structure to other requirements-uncertainty approaches that aim to

influence the design directly rather than waiting to negotiate further with the

requirements writer. For example, Finkelstein and Bush report [23] on an uncer-

tainty approach that considers scenarios in different versions of future reality as

a basis for stability assessment of goal-based requirements representations. Within

this structure of suggesting derived requirements to control flexibility, we use

a classification of requirements language issues that is broadly similar to the

checklist decomposition proposed by Kamsties and Paech [17]. In addition to

classifying the problem in the requirement, we also classify the situation of the

requirements writer that might have led to the uncertainty, building on the insights

found in Moynihan’s requirements-uncertainty analysis of IS project managers

[22]. Finally, we introduce one important terminological distinction: in addition

to requirements uncertainty, which is associated with the problems in communicat-

ing the requirement, we also refer to requirements volatility, the change that could

occur to the requirement.

8.2.1 Process Overview

The commitment uncertainty process is shown in Fig. 8.1. In sub-process p1 we

examine requirements for indicators of uncertainty, taking into account both the

requirement and its assumed development context. The techniques employed in

sub-process p1 are described in detail in Sects. 8.2.2 and 8.2.3 below. In p2 we
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create flexibility requirements by factoring the uncertainty specification into

volatile and non-volatile parts. This sub-process is detailed in Sect. 8.2.4. Finally,

in Sect. 8.2.5, we describe sub-process p3, in which we suggest possible implemen-

tation strategies for the requirements based on a predefined prompt list for the scope

of the product in which the volatility lies.

8.2.2 Requirements Uncertainty Prompts

The checklist for requirements issues is as shown in Table 8.1. The list contains

issues that are related to the linguistic structure of the requirement as well as issues

that relate to the technical content of the requirement. In this analysis technique, we

recommend an explicit record of uncertainty, linking to relevant supporting infor-

mation, to enable effective impact analysis. This is similar to the use of domain

models and traceability in product-line engineering, and is essential to effective

uncertainty risk management.

In practice, a single requirement may include many forms of uncertainty, which

may interact with one another. Rather than trying to classify all such interactions,

the analysis prompts the reader into thinking about the requirement from different

standpoints. In some situations, no particular reason for the uncertainty will emerge.

Assess requirements
issues

Requirements

Uncertainties

Clarify requirements

Derive flexibility 
requirements

Flexibility requirements

Determine appropriate
design strategy

Design prompt list

Volatile/nonvolatile 
decoupling

Uncertainty prompts

Writer context

p1

p2

p3

Fig. 8.1 Overview of the commitment uncertainty process. Specific materials on the left-hand
side are explained in this chapter. The clarification process on the right-hand side is outside of the
scope of this chapter
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A pragmatic trade-off must be made between the effort of explaining the uncer-

tainty and the costs saved by performing the analysis.

As an example, consider this sample requirement:

110. The system shall provide an indication of the IDG oil temperature status to the aircraft

via ARINC.

This requirement suffers from (at least) two different uncertainties. Firstly, the

phrase “an indication of the IDG oil temperature status” contains words (“indica-

tion”, “status”) that are either redundant (meaning ‘provide the IDG oil tempera-

ture’) or poorly-defined (meaning to get the status of the oil temperature, and then

transmit an indication of the status).

In all likelihood, the real requirement is the following:

110a. The system shall provide its measurement of the IDG oil temperature to the aircraft

via ARINC.

Table 8.1 Uncertainty indicator checklist

Area Uncertainty Form

Incompleteness

Unfinished

requirement

A part of the requirement has not yet been written. There

could be a trailing unfinished clause or an ellipsis. There

will usually be little to indicate how to fill the gap.

Placeholders

A placeholder is used for part of the requirement. This is

typically some metasyntactic expression – perhaps

“TBD” or “[upper limit]”. In some organisations,

placeholders may be given as information paragraphs

or marked-up notes.

Missing

counterpart

In many cases, requirements come as a set. For example,

there may be a startup requirement for each mode of

a system. Even with little domain knowledge, it should

be apparent when part of the set is missing.

Ambiguity

Under-

specification

An underspecified requirement constrains the

implementation to some extent, but leaves options open.

In some cases, this is a careful abstraction to avoid over-

constraining the implementation. In others, the

requirement is simply not concrete enough.

Terminology

Some terminology in the requirement is not well-defined;

it needs qualification, better definition or replacement.

Syntactic structure

The sentence has a structure that can be read in more than

one plausible way. This areas is well-studied in linguistic

approaches to requirements ambiguity [18, 24]

Commitment

Incorrectness

There is some detail in the requirement that is

demonstrably incorrect, through a scenario or some

logical inference.

Overspecification

The requirement includes more detail than necessary,

giving awkward or infeasible constraints.

Mislabelling

Misplaced

requirement

The positioning of the requirement (section heading,

informative context) conflicts with its content.

Mislabelled

domain

information

The statement is presented as a requirement but it

contains only definitions, therefore technically not

requiring any action.
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The second issue is that the requirement does not directly identify where to find

out information about the message format or value encoding. The link could be

written into the requirement:

110b. The system shall provide its measurement of the IDG oil temperature to the aircraft

via ARINC according to protocol P100-IDG.

It is more likely that the link would be provided through a tool-specific trace-

ability mechanism to an interface control document.

8.2.3 Identifying Requirements Writer Context

We recognise that there is also value in trying to understand the context within

which a requirement is written; given a set of such requirements, it may be possible

to infer details of the context and hence suggest specific actions to take to address

uncertainty. Table 8.2 explains possible reasons for problems appearing in

requirements. Rather than capturing every requirements issue, we instead present

possible issues for the engineer to consider when deciding on how much informa-

tion to feed back to the requirements writer and when. We make no claim at this

stage that the table is complete; however, it covers a number of different aspects

that might not ordinarily be considered, and on that basis we feel it should be

considered at least potentially useful.

In practice, it will rarely be possible to obtain a credible picture of the

requirements writer context. Nevertheless, it can be useful to consider the possible

context to at least try to understand and accommodate delays in the requirements.

Explicitly recording assumptions about the writer also facilitates useful discussion

among different engineers, particularly if there are actually multiple issues behind the

problems in a particular requirement. Finally, the overall benefit of this identification

step is that it gives clear tasks for the engineer, reducing the so-called “task uncer-

tainty” and improving the ability to make useful progress against the requirements.

8.2.4 Recording and Validating Uncertainties

To record the uncertainty in a way that is useful to all interested stakeholders, we

advocate a multi-stage recording process shown in Fig. 8.2. First, the original

requirement and uncertainty analysis are identified. Then, the requirement is

restated by identifying volatile parts and presenting a miniature product line view

of the requirement. The exact process here is one of engineering judgement based

on the form of the uncertainty and the reason behind it; the interested reader is

referred to a more comprehensive work on product lines (e.g. Bosch [3] or Weiss

and Lai [9]) for further elaboration.
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With the requirement volatility captured, the requirement is then restated into

the same form as the original requirement. This is the shadow requirement, and

represents what the engineer will actually work to. The final step is to double-check

the result by checking that the original requirement, as stated, is one possible

instantiation of the shadow requirement.

Consider the sample requirement 110 again:

110. The system shall provide an indication of the IDG oil temperature status to the aircraft

via ARINC.

Table 8.2 Writer context checklist

Reason Details

Novelty

The requirements writer, and perhaps also the reader, is unfamiliar with this area

of requirements. This is either slowing the writer down (unfinished

requirements) or causing premature commitment (incorrect requirements).

Uncertainty should decrease over time. Detailed feedback on the requirements

may be unwelcome early on.

Complexity

The requirements specify something complex, and the difficulty of dealing with

the complexity leads to unfinished, ambiguous or conflicting requirements. They

may also be copied from previous requirements to reuse a successful structuring

mechanism.

Concurrent

delay

The requirements writer has yet to perform the work towards the requirement;

the details depend on the results of processes that are incomplete. This often

happens in large projects with multiple subsystems and complex interfaces.

Eventually, the requirement will be properly defined. In this case, feedback is

likely to be welcome.

Pressure

The requirements writer is under pressure; the final requirement has not yet been

defined. This could arise from areas such as inter-organisational politics,

financial arrangements or resourcing. Feedback to suggest clarifications may not

be effective.

Language gap

The requirements writer uses language differently to the requirements reader.

He may be writing in a non-native language but using native idioms and

grammar, or he may apply the rules of the language differently to the expectation

of the reader. This subject is studied at length in linguistic approaches to

requirements [16].

Context gap

The uncertainty arises from the difference in information available to the reader

compared to the writer. The writer may make assumptions that are not made

explicit, or the reader may know more about the target platform. It will be useful

to document explicit assumptions to help support decision-making.

Intent gap

It may be unclear how the requirements writer intends to constrain the

implementation. This can occur with abstractions; distinguishing between

deliberate and accidental generality can be difficult. Another possibility is a set

of “soft” requirements to trade off, presented as hard constraints. This may

happen if the contract does not allow for appropriate negotiation. Issues such as

these indicate that extra effort in design trade-offs and flexible architecture may

be appropriate.

Medium

The communications medium between writer and reader may constrain the

information that may be represented in a cost-effective way. The medium

includes the tools and experience available to the writer and reader. For example,

the reader may be able to read text and diagrams, but not view links between

the two.
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The volatility might be specified as follows:

Stable part:

• Sending data over ARINC, part of overall ARINC communications.

• Sending IDG oil temperature or derived values, depending on reading or synthesising value

Volatile part:

• Data to be sent

• Message format/encoding

Likely changes:

• Data to be sent is one or more of:

• IDG oil temperature reading

• IDG oil temperature limits, rate of change

• Details of faults with that reading

• Presence/absence of faults

• Details of current sensing method

• Value encoding will depend on data to be sent

Instantiations:

110a. The system shall provide its measurement of IDG oil temperature to the aircraft via

ARINC.

110b. The system shall provide a count of current IDG oil temperature faults to the aircraft

via ARINC.

110c. The system shall provide IDG oil temperature, operating limits and rate of change to

the aircraft via ARINC.

Identify volatility Requirement

Volatility specification 
(feature model)

Create shadow 
requirement

Shadow requirement

Validate shadow 
requirement

Product-line skills

Requirements variation 
skills

e1

e2

e3

Fig. 8.2 Overview of deriving flexibility requirements. Volatility (expected changes) is specified

and then factored into the requirement to create a family of related requirements
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One possible shadow requirement for the IDG oil temperature requirement

would be:
110x. The system shall provide (IDG oil temperature|IDG oil temperature faults|IDG oil

temperature presence/absence of faults|IDG oil temperature, operating limits and rate of

change) to the aircraft via ARINC [using protocol (P)].

An alternative approach is to derive explicit flexibility requirements to guide the

implementation:

F.110a. The impact of changes to the feature of the IDG oil temperature to send on the

delivery of IDG information in requirement 110 shall be minimised.

F.110b. The impact of changes to the communication format on the delivery of IDG

information to the aircraft shall be minimised.

8.2.5 Suggesting Design Approaches

It is not intended that the commitment uncertainty approach should constrain the

type of implementation chosen to accommodate the identified uncertainty. Never-

theless, it is useful to give advice on the type of design approach that is likely to be

successful, as a way to further overcome task uncertainty and improve the likeli-

hood of quickly arriving at a suitable design.

The advice is based on a recognition that a design approach will typically

respond to a group of requirements. We take as input the scale of the volatility in

that group of requirements and produce a suggested list of design approaches to

consider, in a particular order. The intent is not to restrict the engineer to these

design approaches, nor to constrain the engineer to select the first approach for

which a design is possible; the aim is simply to help the engineer to quickly arrive at

something that is likely to be useful.

Our approach is therefore much coarser than more considered and involved

approaches such as those of Kruchten [11] or Bosch [3]. The mapping is shown in

Table 8.3. In this table, the scale of design volatility is broadly categorised as

“parameter” when the volatility is in a single parameterisable part of the requirements;

“function” when the behaviour changes in the volatile area; and “system” when the

volatility is in the existence or structure of a whole system. The engineer is

encouraged to choose whichever of these designations best matches the volatility,

and then use his existing engineering skills to arrive at designs that are prompted by

the entries under that heading: “Parameterisation” to include suitable data types and

parameters in the design; “Interfaces and Components” to consider larger-scale

Table 8.3 Mapping from volatility scale to suggested design approaches

Parameter Function System

Parameterisation Interfaces and components Interfaces and components

Interfaces and components Parameterisation Auto-generation

Auto-generation Auto-generation
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interfacing and decoupling; and “Auto-Generation” to build a domain-specific lan-

guage or component configuration scripting system to accommodate the volatility.

8.2.6 Ordering Design Decisions

In software, major design decisions are traded off and captured in the software

architecture; functionality is then implemented with respect to this architecture.

In some complex design domains, however, there are multiple competing design

dependencies that can be difficult to resolve. To assist in making progress in this

context, we provide a framework that tracks design dependencies and resolves design

decisions hierarchically to produce the complete design. The intended effect is that the

areas that are most volatile are those that are least fundamental to the structure of the

design. This technique makes use of product-line concepts to represent optionality.

In addition to dependencies between design decisions and (parts of) requirements,

any part of a design may depend on part of an existing design commitment. This

includes both communicating with an existing design element and reusing or

extending an existing element. These dependencies are the easiest to accommodate

with indirection and well-defined interfaces. Contextual domain information is also

important, andmost design commitments are strongly related to domain information.

The dependency on domain information can be managed through parameterisation

or indirection. The process of uncertainty analysis provides additional exposure

of contextual issues, helping to reduce the risk associated with missing context.

In our prototype modelling approach, we explicitly represent dependencies

between design elements in a graphical notation, shown in Fig. 8.3. This example

represents the decision to add the IDG oil temperature parameter to the ARINC

table as defined in the interface control document. The decision is prompted by the

Add IDG oil 
temperature 
parameter to 
ARINC table

requirements

Send IDG oil 
temperature 

data over 
ARINC

IDG oil temperature
measurement

existing 
design 

commitment

ARINC data 
communications

IDG oil temperature 
communications

design 
(process)

new design 
commitment

context
Airframe 
interface 
control

Fig. 8.3 Representing dependencies between design elements
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requirement to send the information, the availability of the information, and the

availability of a suitable communication mechanism. The result of the decision is

a new entry in a data table to allow the communication of the appropriate value.

While this example is perhaps trivial, it illustrates the important distinction between

decisions (processes that the user may engage in) and designs (the artefacts that

result from design activity).

Commitment uncertainty analysis associates volatility with context, require-

ments and design. This may be annotated alongside the decision tracing diagram.

To retain familiarity and compatibility with existing approaches, we base this

representation on conventional feature modelling notations, as shown in Fig. 8.4.

A feature model view of design decision volatility is a powerful visual tool to help

appreciate the impact of volatility on the design approach. It is expected that this

Add IDG oil 
temperature 
parameter to 
ARINC table

Send IDG oil 
temperature 
data over 
ARINC

IDG oil temperature
measurement

ARINC data 
communications

IDG oil temperature 
communications

Airframe 
interface 
control

IDG oil 
temperature 

message

IDG oil 
temperature 

measurement

IDG oil 
temperature 

metadata

IDG oil 
temperature 
information

Add IDG oil 
temperature 
metadata to 
ARINC table

Send IDG oil 
temperature 
data over 
ARINC

IDG oil temperature 
measurement

ARINC data 
communications

IDG oil temperature
communications

Airframe 
interface 
control

<1-*>

Fig. 8.4 Representing volatility with design decisions. The annotation on the left-hand side shows
features (rectangles) with dependencies (arcs) and selection constraints (arc label < 1–* > in

this example)
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type of visualisation will be of most benefit when communicating involved techni-

cal risk deliberations to interested stakeholders.

Once a body of design decisions has been produced, individual design com-

mitments may be resolved together to create design solutions. The granularity of

resolution is not fixed; it will depend on the complexity of the design decisions,

their dependencies and their volatility. Similarly, the order of design decisions

is not fixed. Any design decision that changes will have an impact on later design

decisions, so the intent of design decision resolution is to defer more volatile

decisions as late as possible in the decision sequence. Ordinarily, the design decision

sequence is chosen by creating a partial order from the design decision dependencies,

adding volatility information and then creating a total order from the resulting

dependencies. When adding the volatility information, it is important to start from

the most volatile decision and then descend in order of volatility, adding volatility

relationships where they do not conflict with existing relationships.

In extreme cases, some reengineering will be needed to arrive at an appropriate

design. For example, it may be advantageous to break a design dependency in order

to accommodate a volatility dependency. This will typically prompt a refactoring

of the existing commitments to accommodate the additional variation from the

volatile design and allow for the design dependency using dependency injection

and inversion of control.

8.3 Empirical Evaluation

8.3.1 Quantitative Analysis of Effectiveness

In this section, we present the design and results of an experiment to test the

theoretical effectiveness of the commitment uncertainty approach. For this experi-

ment, we used four instances of the requirements from an engine controller project;

a preliminary (draft) document P and issued requirements I1, I2 and I3, from which

we elicited changes made to the requirements over time. Since the requirements in

this domain are generally expressed at a relatively low level – particularly with

respect to architectural structure – we consider that the requirements are, for the

purposes of this experiment, equivalent to the design.

In the experiment, we created two more flexible versions of P: Pt using conven-

tional architectural trade-off techniques, and Pu using commitment uncertainty

techniques. The hypothesis is that, when faced with the changes represented by

I1–3, Pu accommodates those changes better than Pt, and both Pu and Pt are better at

accommodating changes than P. We consider a change to be accommodated if the

architecture of the design provides flexibility that may be used to implement the

required change. Table 8.4 shows the data for Pu, and Table 8.5 is the equivalent

data for Pt. In each table, the ID column gives the associated requirement ID, then
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the Scope column identifies whether the requirement was in scope for commitment

uncertainty and the Derived column indicates whether a derived requirement was

produced from the analysis. The remaining columns evaluate the two sets of

requirements – the original set and the set augmented with derived requirements

Table 8.4 Uncertainty analysis on randomly-selected requirements

ID Scope Derived I1–P I1–Pu I2–P I2–Pu I3–P I3–Pu

6 Y Y Y Y Y Y Y Y

20 Y Y Y Y Y Y Y Y

32 Y Y Y Y Y Y Y Y

99 Y Y Y Y Y Y Y Y

105 Y Y Y Y Y Y Y Y

22 Y Y Y Y Y Y Y Y

127 Y Y N Y N Y N Y

5 Y N Y Y Y Y Y Y

39 Y Y N Y N Y N Y

49 Y Y Y Y Y Y N Y

26 Y Y Y Y Y Y Y Y

16 Y Y Y Y Y Y Y Y

113 Y Y Y Y Y Y Y Y

118 Y Y N Y N Y N Y

119 Y Y Y Y Y Y Y Y

50 Y N Y Y Y Y Y Y

107 Y Y N Y N Y N Y

56 N N Y Y Y Y Y Y

12 Y N Y Y Y Y Y Y

60 Y Y Y Y Y Y Y Y

64 Y N Y Y Y Y Y Y

70 Y Y Y Y Y Y Y Y

71 Y Y Y Y Y Y Y Y

110 Y Y N Y N Y N N

2 N N Y Y Y Y Y Y

73 N N Y Y Y Y Y Y

76 Y Y Y Y Y Y Y Y

123 Y Y N Y N Y N Y

137 N N Y Y Y Y Y Y

140 N N Y Y Y Y Y Y

148 N N Y Y Y Y Y Y

151 N N Y Y Y Y Y Y

155 N N Y Y Y Y Y Y

159 N N Y Y Y Y Y Y

162 N N Y Y Y Y Y Y

93 Y Y N Y N Y N Y

94 Y Y N Y N Y N Y

120 Y Y Y Y Y Y Y Y

Y total 28 24 30 38 30 38 29 37

Filtered 28 24 20 28 20 28 19 27
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from the additional analysis. At the bottom of the table, the totals are presented as

both raw totals and a filtered total that excludes the requirements that were outside

the scope of architectural flexibility provision.

Table 8.5 Trade-off analysis on randomly-selected requirements

ID Scope Derived I1–P I1–Pt I2–P I2–Pt I3–P I3–Pt

19 Y Y Y Y Y Y Y Y

30 Y Y N N N N N N

32 Y N N N N N N N

102 Y Y N N N N N N

106 Y N N N N N N N

127 Y N N N N N N N

10 Y N Y Y Y Y Y Y

38 Y N Y Y Y Y N N

48 Y Y Y Y Y Y Y Y

131 Y N Y Y Y Y Y Y

16 Y Y Y Y Y Y Y Y

113 Y Y Y Y Y Y Y Y

118 Y Y N Y N Y N Y

42 Y N Y Y Y Y Y Y

50 Y N Y Y Y Y Y Y

81 Y N Y Y Y Y Y Y

27 Y N N N N N N N

62 Y Y Y Y Y Y Y Y

67 Y Y Y Y Y Y Y Y

71 Y Y Y Y Y Y Y Y

111 Y Y N Y N Y Y Y

3 Y N Y Y Y Y Y Y

31 N N Y Y Y Y Y Y

76 Y Y Y Y Y Y Y Y

6 Y N Y Y Y Y Y Y

56 N N Y Y Y Y Y Y

109 N N Y Y Y Y Y Y

78 N N Y Y Y Y Y Y

136 N N Y Y Y Y Y Y

142 N N Y Y Y Y Y Y

148 N N Y Y Y Y Y Y

151 N N Y Y Y Y Y Y

154 N N Y Y Y Y Y Y

160 N N Y Y Y Y Y Y

88 Y N Y Y Y Y Y Y

92 N N Y Y Y Y Y Y

96 Y Y Y Y Y Y Y Y

108 N N Y Y Y Y Y Y

Y total 26 13 30 32 30 32 30 31

Filtered 26 13 18 20 18 20 18 19
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To analyse the hypothesis, we compare the ability of one design to accommodate

change with the ability of another. This produces contingency tables, displayed

in Tables 8.6–8.8.

The results indicate that the commitment uncertainty analysis made a significant

improvement in the ability to accommodate change, while the more conventional

trade-off analysis was not as capable. Some caveats should, however, be stated

here. The significance measure here provides an indication of internal validity.

In this particular engineering domain, the use of requirements to stand for designs

is appropriate, since the design process is characterized by the iterative decom-

position of requirements. We note, however, that our findings may not be applica-

ble in other domains. In terms of the external validity of the study, it is important to

note that our experiment differed from real-world practice in that we were external

observers of the project, with access to the entire lifecycle history. In practice,

it may be more difficult for interested parties to make appropriately flexible com-

mitments early on in a project. It would be interesting to repeat the study in a live

project, deriving flexibility requirements to which designers were prepared to

commit their choices and then observing the degree to which these requirements

proved useful in accommodating later change. It should also be noted that this

work concerns an embedded software system, where there are considerable con-

straints on the design and implementation, and there are objective tests of system

functionality and effectiveness. Design drivers in other domains may, of course,

differ markedly: for example, a successful design might be one which opens

up a new market or incorporates some innovative functionality. In these cases,

the nature of the requirements and design processes are likely to differ markedly

from the aerospace domain, and the effectiveness of our proposed approach may be

less clear.

Table 8.7 Summary of trade-off analysis against original requirements. No significant

improvement

Y N Y N Y N

I1–P 18 8 I2–P 18 8 I3–P 18 8

I1–Pt 20 6 I2–Pt 20 6 I3–Pt 19 7

Table 8.8 Summary of uncertainty analysis against trade-off analysis. Data show significant

(w2, p < 0.05) improvement of uncertainty analysis against trade-off analysis

Y N Y N Y N

I1–Pu 28 0 I2–Pu 28 0 I3–Pu 27 1

I1–Pt 20 6 I2–Pt 20 6 I3–Pt 19 7

Table 8.6 Summary of uncertainty analysis against original requirements. Data show significant

(w2, p < 0.05) improvement over original system

Y N Y N Y N

I1–P 20 8 I2–P 20 8 I3–P 19 9

I1–Pu 28 0 I2–Pu 28 0 I3–Pu 27 1
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8.3.2 Qualitative Evaluation of Design Selection

In this study, we investigated the ability of the design prompt sequence approach to

correctly identify appropriate design targets for the implementation of uncertainty-

handling mechanisms. The study is based on an internal assessment of technical

risk across a number of engine projects conducted in 2008. We extracted eight areas

that had been identified as technical risks that were in scope for being addressed

with architectural mechanisms. For each identified technical risk, we elicited

uncertainties and then used the design prompt sequence to generate design options.

Finally, we chose a particular design from the list and recorded both the position of

the design in the list and the match between the chosen design and the final version

of the requirements.

As an example, consider the anonymised risk table entry in Table 8.9. The

individual uncertainties for this particular instance are elaborated and documented

in a custom tabular format shown in Table 8.10.

The design prompts for “Function, Concurrent” are presented in the order,

components/interfaces, parameterisation and then auto-generation.

The options identified are:

1. Use an abstract signal validation component with interfaces that force the

designer to consider raw and validated input signals, power interrupts and

signals for faults. This design ensures that each component encapsulates any

uncertainty regarding its own response to power interrupt.

Table 8.9 Example risk table entry

Risk area Specific risk Particular

instances

Requirements –

flow-down

Have system-level requirements for reaction to power

supply interrupts been decomposed into software

requirements?

Project Hornclaw

refit software.

Table 8.10 Custom tabular format for documentation of uncertainty

Certainties

After a power interrupt, the system initialises afresh and its RAM and program state no longer

represent the state of the environment.

The system can determine some information about the state of the environment from non-volatile

memory.

The only part of the system that will be out of sync after a power interrupt is input validation.

Uncertainties

Type Definition Rationale

Function

concurrent

Required signal validation after

a power interrupt

Derivation from the technical risk concept

“requiremens for reaction to power supply

interrupts”
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2. Use a parameterised signal validation component that selects its response to

power interrupt from a list of possible responses. The list should be based on

domain expertise and experience in designing robust power interrupt manage-

ment schemes. This is applicable if the range of possible responses can be

captured easily in such a list, and as long as the use of the response selection

mechanism is consistent with certification guidelines for configurable

components.

3. An auto-generation system may be appropriate for complex parameterisation.

The input configuration is derived from the range of possible input validation

responses to power interrupt. The input language to the auto-generation system

should be easy to use and should be similar to other auto-generation input

languages in use. For this option, the language itself captures and manages the

uncertainty.

Assessment of these available choices shows that the abstract interface is the

easiest to implement; the parameterisation and auto-generation approaches carry

more specific details of the available interrupt-management schemes, which is not

necessarily a net benefit at this time.

With such a small study, it is difficult to quantify the net benefit of the design

prompt sequence; nevertheless, we feel it is useful to present some observations on

the outcome of the study. The results are shown in Table 8.11.

Firstly, the study showed that the prompts were able to suggest multiple design

oprions for each technical risk area. Contrary to expectations, the first design

alternative was not necessarily the alternative that was eventually chosen; more-

over, the last design choice was never selected for use in this study. This suggests

that it may not be directly beneficial to create too many different design choices,

although there may be an indirect benefit from the comparison of the second design

choice to the third choice in establishing its relative merit. It should also be noted

that, by forcing designers to consider multiple alternative design solutions (contrary

to their usual practice), the technique potentially reduces the danger of the “first

plausible design syndrome”, whereby designers commit themselves to the first

apparently workable solution, unwilling to move on from it even when problems

are identified with the design. Put another way, this could be seen as a way of

Table 8.11 Outcome of qualitative design prompt sequence study

Technical risk area Uncertainties Design options Chosen design

Match to final

requirements

New feature 2 3 1 Estimated good

Architecture scope 4 3, 3 2, 2 Perfect

Comprehensive requirements 7 3 None N/A

Comprehensive requirements 3 3 2 Estimated good

Incremental development 1 0 N/A N/A

Power interrupt requirements 1 3 1 Estimated good

State transitions 2 4 1 Perfect

New feature 2 3 2 Good
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encouraging engineers to delay design commitments [25] which are viewed by

some as underpinning lean processes [26].

Secondly, it was useful during the study to note the applicability of the design

choices to communicate contextual assumptions from the design phase for valida-

tion when changes occur. For example, some design options could result in unused

inputs once changes are made, which could impact on testability.

Lastly, we found that in some areas one uncertainty would lead on to further

uncertainties. This was particularly the case in novel design areas, where an

uncertainty structure arose from consideration of the suggested design alternatives.

We expect that this is more closely related to a pattern-based approach to product-

line feature modelling than directly to uncertainty analysis, and the phenomenon

would merit closer study.

Again, we should express some caveats concerning the wider applicability of

these observations. The study reported in this chapter is small, and, because of this,

it is difficult to extrapolate its findings to a wider context. However, we do believe

the construct validity to be appropriate � that the experiment is able to show, in

principle, relationships between the scale of uncertainty and the type of design

solution that is most appropriate to address the requirement. It should also be noted

that the application domain is a very stable one: it is relatively easy to draw on

previous experience to derive alternative design solutions. This may be more

difficult in a less stable domain, although it may be that more useful alternative

designs can in fact be identified in such environments. There is then a trade-off

between the evaluation of alternatives and the technique’s capacity, ultimately,

to help designers in the derivation of better design solutions.

In terms of the practical application of the ideas presented here, it would be most

appropriate to view the approach as a contribution to process architecture, perhaps

in the context of product-line development or a framework such as BAPO [27].

Our approach should sit as one of a range of mechanisms that allow the designers

to make commitments at appropriate points in the process.

8.4 Summary and Research Outlook

We have presented a synthesis of concepts from uncertainty, risk management and

product lines to address the issue of requirements uncertainty that prevents the

engineer frommaking a design commitment. The intended use of the technique is to

rapidly suggest possible risk areas and highlight options for a lower-risk implemen-

tation that includes flexibility to accommodate particular variations from the

requirement as stated. These prompts aim to inspire the engineer into creating

a solution that is engineered for specific potential uncertainties, rather than forcing

either a brittle implementation that cannot respond to change or an over-engineered

solution that is difficult to manage over time.

In our evaluation of the technique, we found that there is significant potential for

this type of analysis to suggest design flexibility that is warranted by subsequent
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changes between early project requirements and final issued project requirements.

Several questions still remain unanswered, however. Most importantly, how much

effort is involved in creating the derived requirements and flexible design versus

the time taken to refactor the design at a later stage? It is this comparison that is most

likely to persuade engineers that the technique has merit. In support of this,

we emphasise the positive results that have been obtained so far and focus on the

practical aspects of the approach – its lightweight nature and the ability to apply

it only where immediate risks present themselves. Similarly, in how many cases is

flexibility added to the design but never used later on? The presence of a large amount

of unused functionality may be a concern particularly in the aerospace industry and

especially if it prevents the engineer from obtaining adequate test coverage.

For future work in this area, we have identified four themes. Firstly, we are

interested in integration of the concepts of commitment uncertainty into a suitable

metamodelling framework such as decision traces [28] or Archium [29]. Second,

it would be interesting to deploy appropriate tool support based on modern meta-

modelling [30]. Third, there is potential benefit in a richer linguistic framework

to support more detailed uncertainty analysis and feedback to requirements

stakeholders, and lastly, further experimentation is needed to understand the nature

of appropriate design advice, design patterns and commitment-uncertainty metrics.
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Chapter 9

Systematic Architectural Design Based

on Problem Patterns

Christine Choppy, Denis Hatebur, and Maritta Heisel

Abstract We present a method to derive systematically software architectures

from problem descriptions. The problem descriptions are based on the artifacts

that are set up when following Jackson’s problem frame approach. They include a

context diagram describing the overall problem situation and a set of problem

diagrams that describe subproblems of the overall software development problem.

The different subproblems should be instances of problem frames, which are

patterns for simple software development problems.

Starting from these pattern-based problem descriptions, we derive a software

architecture in three steps. An initial architecture contains one component for each

subproblem. In the second step, we apply different architectural and design patterns

and introduce coordinator and facade components. In the final step, the components

of the intermediate architecture are re-arranged to form a layered architecture, and

interface and driver components are added.

All artefacts are expressed as UML diagrams, using specific UML profiles. The

method is tool-supported. Our tool supports developers in setting up the diagrams,

and it checks different validation conditions concerning the semantic integrity and

the coherence of the different diagrams. We illustrate the method by deriving an

architecture for an automated teller machine.

9.1 Introduction

A thorough problem analysis is of invaluable benefit for the systematic develop-

ment of high-quality software. Not only is there a considerable risk that software

development projects fail when the requirements are not properly understood, but

also the artefacts set up during requirements analysis can be used as a concrete

starting point for the subsequent steps of software development, in particular, the

development of software architectures.

In this chapter, we present a systematic method to derive software architectures

from problem descriptions. We give detailed guidance by elaborating concrete

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
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steps that are equipped with validation conditions. The method works for different

types of systems, e.g., for embedded systems, web-applications, and distributed

systems as well as standalone ones. The method is based on different kinds of

patterns. On the one hand, it makes use of problem frames [1], which are patterns to
classify simple software development problems. On the other hand, it builds on

architectural and design patterns.

The starting point of the method is a set of diagrams that are set up during

requirements analysis. In particular, a context diagram describes how the software

to be developed (called machine) is embedded in its environment. Furthermore,

the overall software development problem must be decomposed into simple

subproblems, which are represented by problem diagrams. The different

subproblems should be instances of problem frames.

From these pattern-based problem descriptions, we derive a software architec-

ture that is suitable to solve the software development problem described by

the problem descriptions. The problem descriptions as well as the software

architectures are represented as UML diagrams, extended by stereotypes. The

stereotypes are defined in profiles that extend the UML metamodel [2].

The method to derive software architectures from problem descriptions consists of

three steps. In the first step, an initial architecture is set up. It contains one component

for each subproblem. The overall machine component has the same interface as

described in the context diagram. All connections between components are described

by stereotypes (e.g., ‹‹call_and_return››, ‹‹shared_memory››, ‹‹event››, ‹‹ui››).

In the second step, we apply different architectural and design patterns. We

introduce coordinator and facade components and specify them. A facade compo-

nent is necessary if several internal components are connected to one external

interface. A coordinator component must be added if the interactions of the

machine with its environment must be performed in a certain order. For different

problem frames, specific architectural patterns are applied.

In the final step, the components of the intermediate architecture are re-arranged

to form a layered architecture, and interface and driver components are added. This

process is driven by the stereotypes introduced in the first step. For example,

a connection stereotype ‹‹ui›› motivates to introduce a user interface component.

Of course, a layered architecture is not the only possible way to structure the

software, but a very convenient one. We have chosen it because a layered architec-

ture makes it possible to divide platform-dependent from platform-independent

parts, because different layered systems can be combined in a systematic way, and

because other architectural styles can be incorporated in such an architecture.

Furthermore, layered architectures have proven useful in practice.

Our method exploits the subproblem structure and the classification of sub-

problems by problem frames. Additionally, most interfaces can be derived from

the problem descriptions [3]. Stereotypes guide the introduction of new com-

ponents. They also can be used to generate adapter components automatically.

The re-use of components is supported, as well.

The method is tool-supported. We extended an existing UML tool by providing

two new profiles for it. The first UML profile allows us to express the different
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models occurring in the problem frame approach using UML diagrams. The second

one allows us to annotate composite structure diagrams with information on

components and connectors. In order to automatically validate the semantic integ-

rity and coherence of the different models, we provide a number of validation

conditions. The underlying tool itself, which is called UML4PF, is based on the

Eclipse development environment [4], extended by an EMF-based [5] UML tool,

in our case, Papyrus UML [6].

In the following, we first discuss the basic concepts of our method, namely

problem frames and architectural styles (Sect. 9.2). Subsequently, we describe the

problem descriptions that form the input to our method in Sect. 9.3. In Sect. 9.4, we

introduce the UML profile for architectural descriptions that we have developed

and which provides the notational elements for the architectures we derive.

In Sect. 9.5, we describe our method in detail. Not only do we give guidance

on how to perform the three steps, but we also give detailed validation conditions

that help to detect errors as early as possible. As a running example, we apply our

method to derive a software architecture for an automated teller machine.

In Sect. 9.6, we describe the tool that supports developers in applying the method.

Sect. 9.7 discusses related work, and in Sect. 9.8, we give a summary of our

achievements and point out directions for future work.

9.2 Basic Concepts

Our work makes use of problem frames to analyse software development problems

and architectural styles to express software architectures. These two concepts are

briefly described in the following.

9.2.1 Problem Frames

Problem frames are a means to describe software development problems. They

were proposed by Michael Jackson [1], who describes them as follows: A problem
frame is a kind of pattern. It defines an intuitively identifiable problem class in
terms of its context and the characteristics of its domains, interfaces and require-
ment. Problem frames are described by frame diagrams, which basically consist of

rectangles, a dashed oval, and different links between them, see Fig. 9.1. The task is

to construct a machine that establishes the desired behaviour of the environment

(in which it is integrated) in accordance with the requirements.

Plain rectangles denote domains that already exist in the application environ-

ment. Jackson [1, p. 83f] considers three main domain types:

• “A biddable domain usually consists of people. The most important charac-

teristic of a biddable domain is that it is physical but lacks positive predictable
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internal causality. That is, in most situations it is impossible to compel a person

to initiate an event: the most that can be done is to issue instructions to be

followed.”

Biddable domains are indicated by B (e.g., Enquiry operator in Fig. 9.1).

• “A causal domain is one whose properties include predictable causal

relationships among its causal phenomena.”

Often, causal domains are mechanical or electrical equipment. They are

indicated with a C in frame diagrams. (e.g., Display in Fig. 9.1). Their actions

and reactions are predictable. Thus, they can be controlled by other domains.

• “A lexical domain is a physical representation of data – that is, of symbolic

phenomena. It combines causal and symbolic phenomena in a special way. The

causal properties allow the data to be written and read.” Lexical domains are

indicated by X.

A rectangle with a double vertical stripe denotes the machine to be developed,

and requirements are denoted with a dashed oval. The connecting lines between

domains represent interfaces that consist of shared phenomena. Shared phenomena

may be events, operation calls, messages, and the like. They are observable by at

least two domains, but controlled by only one domain, as indicated by an exclama-

tion mark. For example, in Fig. 9.1 the notation EO! E5 means that the phenomena

in the set E5 are controlled by the domain Enquiry operator and observed by

the Answering machine.
To describe the problem context, a connection domain between two other

domains may be necessary. Connection domains establish a connection between

other domains by means of technical devices. Connection domains are, e.g., video

cameras, sensors, or networks.

A dashed line represents a requirement reference, and an arrow indicates that the

requirement constrains a domain.1 If a domain is constrained by the requirement,

Fig. 9.1 Commanded Information problem frame

1In the following, since we use UML tools to draw problem frame diagrams (see Figure 9.4), all

requirement references will be represented by dashed lines with arrows and stereotypes

‹‹refersTo››, or ‹‹constrains›› when it is constraining reference.
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we must develop a machine, which controls this domain accordingly. In Fig. 9.1,

the Display domain is constrained, because the Answering machine changes

it on behalf of Enquiry operator commands to satisfy the required Answer
rules.

The Commanded Information frame in Fig. 9.1 is a variant of the Information
Display frame where there is no operator, and information about the states and

behaviour of some parts of the physical world is continuously needed. We present

in Fig. 9.4 the Commanded Behaviour frame in UML notation. That frame

addresses the issue of controlling the behaviour of the controlled domain according

to the commands of the operator. The Required Behaviour frame is similar but

without an operator; the control of the behaviour has to be achieved in accordance

with some rules. Other basic problem frames are the Transformation frame in

Fig. 9.2 that addresses the production of required outputs from some inputs, and

the Simple Workpieces frame in Fig. 9.3 that corresponds to tools for creating and

editing of computer processable text, graphic objects etc.

Software development with problem frames proceeds as follows: first, the

environment in which the machine will operate is represented by a context diagram.
Like a frame diagram, a context diagram consists of domains and interfaces.

However, a context diagram contains no requirements. Then, the problem is

decomposed into subproblems. Whenever possible, the decomposition is done in

such a way that the subproblems fit to given problem frames. To fit a subproblem to

a problem frame, one must instantiate its frame diagram, i.e., provide instances

for its domains, interfaces, and requirement. The instantiated frame diagram is

called a problem diagram.

Fig. 9.3 Simple Workpieces problem frame

Fig. 9.2 Transformation problem frame
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Besides problem frames, there are other elaborate methods to perform require-

ments engineering, such as i* [7], Tropos [8], and KAOS [9]. These methods are

goal-oriented. Each requirement is elaborated by setting up a goal structure. Such

a goal structure refines the goal into subgoals and assigns responsibilities to actors

for achieving the goal. We have chosen problem frames and not one of the goal-

oriented requirements engineering methods to derive architectures, because the

elements of problem frames, namely domains, may be mapped to components of

an architecture in a fairly straightforward way.

9.2.2 Architectural Styles

According to Bass, Clements, and Kazman [10],

The software architecture of a program or computing system is the structure or structures of

the system, which comprise software components, the externally visible properties of those

components, and the relationships among them.

Architectural styles are patterns for software architectures. A style is charac-

terised by [10]:

• A set of component types (e.g., data repository, process, procedure) that perform

some function at run-time,

• A topological layout of these components indicating their run-time

interrelationships

• A set of semantic constraints (for example, a data repository is not allowed to

change the values stored in it)

• A set of connectors (e.g., subroutine call, remote procedure call, data streams,

sockets) that mediate communication, coordination, or cooperation among

components.

When choosing a software architecture, usually several architectural styles

are possible, which means that all of them could be used to implement the

functional requirements. In the following, we will mostly use the Layered
architectural style for the top-level architecture. The components in this layered

architecture are either Communicating Processes (active components) or used

with a Call-and-Return mechanism (passive components).2 We use UML 2 com-

posite structure diagrams to represent architectural patterns as well as concrete

architectures.

2The mentioned architectural styles are described in [11].
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9.3 Problem Description

To support problem analysis according to Jackson [1] with UML [2], we created

a new UML profile. In this profile stereotypes are defined. A stereotype extends

a UML meta-class from the UML meta-model, such as Association or Class
[12].

In the following subsections, we describe our extensions to the problem analysis

approach of Jackson (Sect. 9.3.1), we explain how the different diagrams can be

created with UML and our profile (Sect. 9.3.2), we describe our approach to express

connections between domains (Sect. 9.3.3), and we enumerate the documents that

form the starting point for our architectural design method in Sect. 9.3.4. We

illustrate these concepts on an ATM example in Sect. 9.3.5.

9.3.1 Extensions

In contrast to Jackson, we allow more than one machine domain in a problem

diagram so that we can model distributed systems. In addition to Jackson’s

diagrams, we express technical knowledge (that we know or can acquire before

we proceed to the design phases) about the machine to be built and its environment

in a technical context diagram [3]. In a technical context diagram we introduce

connection domains describing the direct technical environment of the machine,

e.g., the platform, the operating system or mail server. Additionally, we annotate

the technical realisation of all connections as described in Sect. 9.3.3. With UML it

is possible to express aggregation and composition relations between classes and to

use multiplicities. Thus we can express that one domain is part of another domain,

e.g., that a lexical domain is part of the machine. UML distinguishes between active

and passive classes. Active classes can initiate an action without being triggered

before. Passive classes just react to some external trigger. Since domains are

modelled as classes, they now can also be active or passive. Biddable domains

are always active, and lexical domains are usually passive.

9.3.2 Diagram Types

The different diagram types make use of the same basic notational elements. As a

result, it is necessary to explicitly state the type of diagram by appropriate stereo-

types. In our case, the stereotypes are ‹‹ContextDiagram››, ‹‹ProblemDiagram››,

‹‹ProblemFrame››, and ‹‹TechnicalContextDiagram››. These stereotypes extend

(some of them indirectly) the meta-class Package in the UML meta-model.

According to the UML superstructure specification [2], it is not possible that one

UML element is part of several packages. For example a class Customer should
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be in the context diagram package and also in some problem diagrams packages.3

Nevertheless, several UML tools allow one to put the same UML element into

several packages within graphical representations. We want to make use of this

information from graphical representations and add it to the model (using stereo-

types of the profile). Thus, we have to relate the elements inside a package

explicitly to the package. This can be achieved with a dependency stereotype

‹‹isPart›› from the package to all included elements (e.g., classes, interfaces,

comments, dependencies, associations).

The context diagram (see e.g., Fig. 9.8) contains the machine domain(s), the

relevant domains in the environment, and the interfaces between them. Domains are

represented by classes with the stereotype ‹‹Domain››, and the machine is marked

by the stereotype ‹‹Machine››. Instead of ‹‹Domain››, more specific stereotypes

such as ‹‹BiddableDomain››, ‹‹LexicalDomain›› or ‹‹CausalDomain›› can be used.

Since some of the domain types are not disjoint, more than one stereotype can be

applied on one class.

In a problem diagram (see e.g., Fig. 9.9), the knowledge about a sub-problem

described by a set of requirements is represented. A problem diagram consists of

sub-machines of the machines given in the context diagram, the relevant domains,

the connections between these domains and a requirement (possibly composed of

several related requirements), as well as of the relation between the requirement and

the involved domains. A requirement refers to some domains and constrains at least

one domain. This is expressed using the stereotypes ‹‹refersTo›› and ‹‹constrains››.

They extend the UML meta-class Dependency. Domain knowledge and

requirements are special statements. Furthermore, any domain knowledge is either

a fact (e.g., physical law) or an assumption (usually about a user’s behaviour).

The problem frames (patterns for problem diagrams) have the same kind of

elements as problem diagrams. To instantiate a problem frame, its domains, require-

ment and connections have to be replaced by concrete ones. Figure 9.4 shows

the commanded behaviour problem frame in UML notation, using our profile.

9.3.3 Associations and Interfaces

For phenomena between domains, we want to keep the notation introduced by

Jackson. Our experience is that this notation is easy to read and easy to maintain. In

Jackson’s diagrams, interfaces between domains (represented as classes) show that

there is at least one phenomenon shared by the connected classes. In UML,

associations describe that there is some relation between two classes. We decided

to use associations to describe the interfaces in Jackson’s diagrams. An example for

such an interface is depicted in Fig. 9.5. The association AD! {showLog} has the

3Alternatively, we could create several Customer classes, but these would have to have different

names.

140 C. Choppy et al.



www.manaraa.com

stereotype ‹‹connection›› to indicate that there are shared phenomena between the

associated domains. The AdminDisplay controls the phenomenon showLog. In
general, the name of the association contains the phenomena and the controlling

domain. We represent different sets of shared phenomena with a different control

direction between two domains by a second interface class.

Jackson’s phenomena can be represented as operations in UML interface clas-

ses. The interface classes support the transition from problem analysis to problem

solution. Some of the interface classes in problem diagrams become external

interfaces of the architecture. In case of lexical domains, they may also be internal

interfaces of the architecture. A ‹‹connection›› can be transformed into an interface

class controlled by a domain and observed by other domains. To this end, the

stereotypes ‹‹observes›› and ‹‹controls›› are defined to extend the meta-class

Dependency in the UML meta-model. The interface should contain all phenom-

ena as operations. We use the name of the association as name for the interface

class. Figure 9.6 illustrates how the connection given in Fig. 9.5 can be transformed

into such an interface class.

To support a systematic architectural design, more specific connection types can

be annotated in problem descriptions. Examples of such stereotypes which can be

used instead of ‹‹connection›› are, e.g., ‹‹network_connection›› for network

connections, ‹‹physical›› or ‹‹electrical›› for physical connections, and ‹‹ui›› for

user interfaces (see e.g., Fig. 9.8). Our physical connection can be specialised

into hydraulic flow or hot air flow. These flow types are defined in SysML [13].

Fig. 9.5 Interface class generation – drawn

Fig. 9.4 Commanded Behaviour problem frame
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For the control signal flow type in SysML, depending on the desired realisation, the

stereotypes ‹‹network_connection››, ‹‹event››, ‹‹call_return››, or ‹‹stream›› can be

used. Figure 9.7 shows a hierarchy of stereotypes for connections. This hierarchy

can be easily extended by new stereotypes.

For these stereotypes, more specialised stereotypes (not shown in Fig. 9.7) can

be defined that consider the technical realisation, e.g. events (indicated with

the stereotype ‹‹event››) can be implemented using Windows Message Queues

(‹‹wmq››), Java Events (‹‹java_events››), or by a number of other techniques.

Network connections (‹‹network_connection››) can be realised, e.g., by HTTP

(‹‹http››) or the low-level networking protocol TCP (‹‹tcp››).

9.3.4 Inputs and Prerequisites for Architectural Design

As a prerequisite, our approach needs a coherent set of requirements. The architec-

tural design starts after the specification is derived and all frame concerns [1] have
been addressed. To derive software architectures, we use the following diagrams

from requirements analysis:

• Context diagram,

• Problem diagrams, and

• Technical context diagram

Fig. 9.6 Interface class generation – transformed

Fig. 9.7 Connection Stereotypes
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Moreover, it may be necessary to know any restrictions that apply concerning

the interaction of the machines with their environment. For example, in the auto-

matic teller machine, the user must first authenticate before s/he may enter a request

to withdraw a certain amount of money. In the following, we refer to this informa-

tion as interaction restrictions.

9.3.5 The Automatic Teller Machine (ATM)

As a running example, we consider an automatic teller machine (ATM) . Its context

diagram – which is identical to the technical context diagram4 – is shown in

Fig. 9.8. According to this diagram, Customers can interact with the ATM in

the following way:

• Withdraw money by inserting their banking card into the CardReader
(insert_card),

• Enter their PIN (enter_PIN),
• Enter a request to withdraw a certain amount of money (enter_request),
• Remove their card from the CardReader, and
• Take money from the MoneySupply_Case.

The ATM context diagram in Fig. 9.8 contains the ATM as the machine to be

built. In the ATM environment, we can find the Admin responsible for checking

the logs of the ATM with the phenomenon request_log and for filling the

MoneySupply_Case with money (phenomenon insert_money).

Fig. 9.8 The ATM context diagram/technical context diagram

4The technical context diagram is identical to the context diagram, because it is not necessary to

describe new connection domains representing the platform or the operating system.
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In some cases, it is possible that the ATM refuses a withdrawal (refuse_

withdrawal). Each ATM is connected with the AccountData of at least one bank.

We use multiplicities to express this aspect.

The different domains are annotated with appropriate specialised ‹‹domain››

stereotype, e.g., the Customer is biddable and the AccountData is lexical. The

connections are marked with specialisations of the stereotype ‹‹connection››, e.g.,

a user interface (‹‹ui››) between Customer and ATM, and a physical connection

(‹‹physical››) between Customer and CardReader.

The card reader controller subproblem in Fig. 9.9 is an instance of a variant of

Commanded Behaviour (see Fig. 9.4). In this variant, we introduce a physical

connection between the Customer and the CardReader that models the fact

that the customer can physically insert a card into the card reader. Although the

phenomena of that interface are used by the CardReader to inform the

CardReaderController whether there is a card inside the card reader, they

have no interface with the machine.

A subproblem problem diagram is given in Fig. 9.10. It concerns the

BankInformationMachine and is an instance of a variant of the commanded

information frame. (see Fig. 9.1).

The interfaces in context diagram are refined and split to obtain the interfaces in the

problem diagrams. For example, MSC!{case_state, banknote_state} is

refined into MSC!{case_is_open, case_is_closed, banknotes_
removed}. Connection domains, e.g. a AdminDisplay are introduced. Addition-

ally, domains are combined or split. For example, MoneySupplyCaseCard
Reader (MSCCR) combines MoneySupplyCase (MSC) and CardReader
(CR).

Fig. 9.9 Problem diagram for the card reader controller in UML notation

144 C. Choppy et al.



www.manaraa.com

9.4 Architectural Description

For each machine in the context diagram, we design an architecture that is

described using composite structure diagrams [2]. In such a diagram, the com-

ponents with their ports and the connectors between the ports are given. The

components are another representation of UML classes. The ports are typed by

a class that uses and realises interfaces. An example is depicted in Fig. 9.12. The

ports (with this class as their type) provide the implemented interfaces (depicted

as lollipops) and require the used interfaces (depicted as sockets), see Fig. 9.11.

In our UML profile we introduced stereotypes to indicate which classes are

components. The stereotype ‹‹Component›› extends the UML meta-class Class.

For re-used components we use the stereotype ‹‹ReusedComponent››, which is

a specialisation of the stereotype ‹‹Component››. Reused components may also

be used in other projects. This fact must be recorded in case such a component is

changed. A machine domain may represent completely different things. It can

either be a distributed system (e.g., a network consisting of several computers),

a local system (e.g., a single computer), a process running on a certain platform, or

just a single task within a process (e.g., a clock as part of a graphical user interface).

The kind of the machine can be annotated with the stereotypes ‹‹distributed››,

‹‹local››, ‹‹process››, or ‹‹task››. They all extend the UML meta-class Class.

For the architectural connectors, we allow the same stereotypes as for

associations, e.g. ‹‹ui›› or ‹‹tcp››, described in Sect. 9.3.2. However, these

stereotypes extend the UML meta-class Connector (instead of the meta-class

Association).

Fig. 9.10 Problem diagram for the administrator log check
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9.5 Deriving Architectures from Problem Descriptions

We now present our method to derive software architectures from problem

descriptions in detail. For each of its three steps, we specify the input that is needed,

the output that is produced, and a procedure that can be followed to produce the

output from the input. Of course, these procedures are not automatic, and a number

of decisions have to be taken by the developer. Such developer decisions introduce

the possibility to make errors. To detect such errors as early as possible, each step of

the method is equipped with validation conditions. These validation conditions

must be fulfilled if the developed documents are semantically coherent. For exam-

ple, a passive component cannot contain an active component. The validation

conditions cannot be complete in a formal sense. Instead, they constitute necessary

but not sufficient conditions for the different documents to be semantically valid.

New conditions can be defined and integrated in our tool as appropriate.

Fig. 9.11 The ATM initial architecture

Fig. 9.12 Port Type of PCustomer
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Our method leads the way from problem descriptions to software architectures

in a systematic way, which is furthermore enhanced with quality assurance

measures and tool support (see Sect. 9.6).

9.5.1 Initial Architecture

The purpose of this first step is to collect the necessary information for the

architectural design from the requirements analysis phase, to determine which

component has to be connected to which external port, to make coordination

problems explicit (e.g. several components are connected to the same external

domain), and to decide on the machine type and to verify that it is appropriate

(considering the connections). At this stage, the submachine components are not yet

coordinated.

The inputs for this step are the technical context diagram and the problem

diagrams. The output is an initial architecture, represented by a composite structure

diagram. It is set up as follows. There is one component for a machine with

stereotype ‹‹machine››, and it is equipped with ports corresponding to the interfaces

of the machine in the technical context diagram, see Fig. 9.11.

Inside this component, there is one component for each submachine identified in

the problem diagrams, equipped with ports corresponding to the interfaces in the

problem diagrams, and typed with a class. This class has required and provided

interfaces. A controlled interface in a problem diagram becomes a required inter-

face of the corresponding component in the architecture. Usually, an observed

interface of the machine in the problem diagram will become a provided interface

of the corresponding component in the architecture. However, if the interface

connects a lexical domain, it will be a required interface containing operations

with return values (see [14, Sect. 9.3.1]). The ports of the components should be

connected to the ports of the machine, and stereotypes describing the technical

realisation of these connectors are added. A stereotype describing the type of the

machine (local, distributed, process, task) is added, as well as stereotypes

‹‹ReusedComponent›› or ‹‹Component›› to all components. If appropriate, stereo

types describing the type of the components (local, distributed, process, task) are also

added.

The initial architecture of the ATM is given in Fig. 9.11. Starting from the

technical context diagram in Fig. 9.8, and the problem diagrams (including the

ones given in Figs. 9.9 and 9.10), the initial ATM architecture has one component,

ATM, with stereotype ‹‹machine, local›› and the ports (typed with :PAdmin, :
PAccount, :PCustomer, :PMS_C, :PCardReader) that correspond to the

interfaces of the machine in the technical context diagram. The components

(CardReaderController, BankInformationMachine, MoneyCase
Controller, and AccountHandler) correspond to the submachines identified

for this case study (e.g., CardReaderController in Fig. 9.9, and Bank-
InformationMachine in Fig. 9.10). Phenomena at the machine interface
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in the technical context diagram (e.g. CR! {card_inside}, A! {request_
log}, BIM! {display_log}) now occur in external interfaces of the machine.

Phenomena controlled by the machine are associated with provided interfaces (e.g.

BIM! {display_log}), and phenomena controlled otherwise (e.g. by the user),

are associated with required interfaces (e.g., A! {request_log}).
Note that connections in the technical context diagram in Fig. 9.8 not related to

the ATM (such as the one between Admin and MoneySupply_Case) are not

reflected in this architecture.

The ports have a class as a type. This class uses and realises interfaces.

For example, as depicted in Fig. 9.12, the class PCustomer uses the inter-

face AH!{refuse_withdrawal} and realises the class C!{enter_pin,
enter_request}. The ports with this class as a type provide the interface C!
{enter_pin, enter_request} (depicted as a lollipop) and requires the

interface HL! {refuse_withdrawal} (depicted as a socket).

We have defined two sets of validation conditions for this first phase of our

method. The first set is common to all architectures (and hence should be checked

after each step of our method), whereas the second one is specialised for the initial

architecture. We give a selection of the validations conditions in the following.

The complete sets can be found in [15].

Validation conditions for All architectures:

VA.1 Each machine in all problem diagrams must be a component or a re-used

component in the architectural description.

VA.2 All components must be contained in a machine or another component.

VA.3 For each operation in a required interface of a port of a component, there

exists a connector to a port providing an interface with this operation, or it is
connected to a re-used component.

VA.4 The components’ interfaces must fit to the connected interfaces of

the machine, i.e., each operation in a required or provided interface

of a component port must correspond to an operation in a required or

provided interface of a connected machine port.

VA.5 Passive components cannot contain any active components.

VA.6 A class with the stereotype ‹‹Task›› cannot contain classes with the stereo-

type ‹‹Process››, ‹‹Local››, or ‹‹Distributed››.

A class with the stereotype ‹‹Process›› cannot contain classes with the

stereotype ‹‹Local›› or ‹‹Distributed››.

A class with the stereotype ‹‹Local›› cannot contain classes with the stereo-

type ‹‹Distributed››.

Validation conditions specific to the Initial architecture:

VI.1 For each provided or required interface of machine ports in the architecture,

there exists a corresponding interface in the technical context diagram.

VI.2 For each machine in the technical context diagram:

Each stereotype name of all associations to the machine (or a specialization

of this stereotype) must be included in the set of stereotype names of the
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connectors from the internal components to external interfaces inside the

machine.

VI.3 Each stereotype name of the connectors from components to external

interfaces inside an architectural machine component (or their supertypes)

must be included in the set of associations to the corresponding machine

domain in the technical context diagram.

As already noticed, these validation conditions can be checked automatically,

using the tool described in Sect. 9.6.

9.5.2 Intermediate Architecture

The purpose of this step is to introduce coordination mechanisms between the

different submachine components of the initial architecture and its external

interfaces, thus obtaining an implementable intermediate architecture. Moreover,

we exploit the fact that the subproblems are instances of problem frames by

applying architectural patterns that are particularly suited for some of the problem

frames. Finally, we decide whether the components should be implemented as

active or passive components.

The input to this step are the initial architecture, the problem diagrams as

instances of problem frames, and a specification of interaction restrictions5 (see

Sect. 9.3.4). The output is an intermediate architecture that is already

implementable. It contains coordinator and facade components as well as architec-

tural patterns corresponding to the used problem frames. The intermediate archi-

tecture is annotated with the stereotype ‹‹intermediate_architecture›› to distinguish

it from the final architecture.

The intermediate architecture is set up as follows. When several internal

components are connected to one external interface in the initial architecture, a

facade component6 is added. That component has one provided interface containing

all operations of some external port and several used interfaces as provided by the

submachine components. In our ATM example, several components are connected

with external interface :PCustomer in Fig. 9.11; therefore a CustomerFacade
component is added in Fig. 9.13.

If interaction restrictions have to be taken into account, we need a component to

enforce these restrictions. We call such a component an a coordinator component.

A coordinator component has one provided interface containing all operations of

some external port and one required interface containing all operations of some

5Our method does not rely on how these restrictions are represented. Possible representations are

sequence diagrams, state machines, or grammars.
6See the corresponding design pattern by Gamma et al. [16]: “Provide a unified interface to a set of

interfaces in a subsystem. Facade defines a higher-level interface that makes the subsystems easier

to use.”
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internal port. To ensure the interaction restrictions, a state machine can be used

inside the component. Typically, coordinator components are needed for interfaces

connected to biddable domains (also via connection domains). This is because

often, a user must do things in a certain order. In our example, a user must first

authenticate before being allowed to enter a request to withdraw money. Therefore,

Fig. 9.13 Screenshot of the ATM intermediate architecture
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we introduce a CustomerCoordinator in Fig. 9.13. Moreover, we need

a MSC_Coordinator component, because money should only be put into the

money supply case after the user has taken his or her card from the card reader.

Figure 9.13 also contains a sub-architecture for the component BankInfor-
mationMachine. This sub-architecture is an instance of the architectural pattern

associated with the commanded information problem frame. This pattern contains

components that are associated with the acquisition, the storage, and the request for

information.

Figure 9.14 shows the architectural pattern for transformation problems. It is

a pipe-and-filter architecture. The architectural pattern for the required behaviour
frame (not shown here) requires the machine to be an active component.

After adding facade and coordinator components and applying architectural

patterns related to problem frames, we have to decide for each component if it

has to be active or not. In the case of the ATM, all components are reactive (even if

the CardReaderController and the MoneyCaseController use timers

for timeouts). For new connectors, their technical realisation should be added as

stereotypes. For the ATM example, we use the stereotype ‹‹call_return››. Finally,

for all newly introduced components it has to be specified if they are a ‹‹Compo-

nent›› or a ‹‹ReusedComponent››. In Fig. 9.13, we have no re-used components.

To validate the intermediate architecture, we have to check (among others) the

following conditions (in addition to the conditions to given in Sect. 9.5.1).

Validation conditions for the interMediate architecture:

VM.1 All components of the initial architecture must be contained in the interme-

diate architecture.

VM.2 The connectors connected to the ports in the intermediate architecture must

have the same stereotypes or more specific ones than in the initial

architecture.

VM.3 The stereotypes ‹‹physical›› and ‹‹ui››, and their subtypes are not allowed

between components.

9.5.3 Layered Architecture

In this step, we finalise the software architecture. We make sure to handle

the external connections appropriately. For example, for a connection marked

Fig. 9.14 Pattern for component realising transformation
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‹‹gui››, we need a component handling the input from the user. For ‹‹physical››

connections, we introduce appropriate driver components, which are often re-used.

We arrange the components in three layers. The highest layer is the application
layer. It implements the core functionality of the software, and its interfaces mostly

correspond to high-level phenomena, as they are used in the context diagram. The

lowest layer establishes the connection of the software to the outside world.

It consists of user interface components and hardware abstraction layer (HAL)

components, i.e., the driver components establishing the connections to hardware

components. The low-level interfaces can mostly be obtained from the technical

context diagram. The middle layer consists of adapter components that translate

low-level signals from the hardware drivers to high-level signals of the application

components and vice versa. If the machine sends signals to some hardware, then

these signals are contained in a required interface of the application component,

connected to an adapter component. If the machine receives signals from some

hardware, then these signals are contained in a provided interface of the application

component, connected to an adapter component.

The input to this step are the intermediate architecture, the context diagram, the

technical context diagram, and the interaction restrictions. The output is a layered
architecture. It is annotated with the stereotype ‹‹layered_architecture›› to distin-

guish it from the intermediate architecture. Note, however, that a layered architec-

ture can only be defined for a machine or component with the stereotype ‹‹local››,

‹‹process›› or ‹‹task››. For a distributed machine, a layered architecture will be

defined for each local component.

To obtain the layered architecture, we assign all components from the interme-

diate architecture to one of the layers. The submachine components as well as the

facade components will belong to the application layer. Coordinator components

for biddable domains should be part of the corresponding (usually: user) interface

component, whereas coordinator components for physical connections belong the

the application layer. As already mentioned, connection stereotypes guide the

introduction of new components, namely user interface and driver components.

All components interfaces must be defined, where guidance is provided by the

context diagram (application layer) and the technical context diagram (external

interfaces).

The final software architecture of the ATM is given in Fig. 9.15. Note that we

have two independent application components, one for the administrator and the

other handling the interaction with the customers. This is possible, because there

are no interaction restrictions between the corresponding subproblems. However,

both applications need to access the log storage. Therefore, the component

LogStorage does not belong to one of the application components. Each of the

biddable domains Admin and Customer is equipped with a corresponding user

interface. For the physical connections to the card reader and the money supply

case, corresponding HAL and adapter components are introduced. Because the

connection to the account data was defined to be a ‹‹network_connection›› already

in the initial architecture, the final architecture contains a DB_HAL component.
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The validation conditions to be checked for the layered architecture are similar

to the validation conditions for the intermediate architectures. Conditions VM.3

must also hold for the layered architecture, and conditions VM.1 and VM.2 become

VL.1 All components of the intermediate architecture must be contained in the

layered architecture.

VL.2 The connectors connected to the ports in the layered architecture must

have the same stereotypes or more specific ones than in the intermediate

architecture.

This final step could be carried out in a different way – resulting in a different

final architecture – for other types of systems, e.g., when domain-specific languages

are used.

9.6 Tool Support

The basis of our tool called UML4PF [17] is the Eclipse platform [4] together with

its plug-ins EMF [5] and OCL [18]. Our UML-profiles described in Sects. 9.3

and 9.4 are conceived as an eclipse plug-in, extending the EMF meta-model. We

store all our OCL constraints (which formalise the validation conditions given

in Sect. 9.5) in one file in XML-format. With these constraints, we check the

validity and consistency of the different models we set up during the requirements

Fig. 9.15 The ATM layered architecture
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analysis and architectural design phases. An overview of the context of our tool is

provided in Fig. 9.16. Gray boxes denote re-used components, whereas white boxes

describe those components that we created.

The functionality of our tool UML4PF comprises the following:

• It checks if the developed models are valid and consistent by using our OCL

constraints.

• It returns the location of invalid parts of the model.

• It automatically generates model elements, e.g., it generates observed and

controlled interfaces from association names as well as dependencies with

stereotype ‹‹isPart›› for all domains and statements being inside a package in

the graphical representation of the model.

The graphical representation of the different diagram types can be manipulated

by using any EMF-based editor. We selected Papyrus UML [6], because it is

available as an Eclipse plug-in, open-source, and EMF-based. Papyrus stores the

model (containing requirements models and architectures) with references to the

UML-profiles in one XML-file using EMF. The XML format created by EMF

allows developers to exchange models between several UML tools. The graphical

representation of the model is stored in separate file. Since UML4PF is based on

EMF, it inherits all strengths and limitations of this platform. To use Papyrus with

UML4PF to develop an architecture, developers have to draw the context diagram

and the problem diagrams (see Sect. 9.3). Then they can proceed with deriving the

specification, after UML4PF has generated the necessary model elements. Next, the

requirements models are automatically checked with UML4PF.

Re-using model elements from the requirements models, developers create the

architectures as described in Sect. 9.5. After each step, the model can be automati-

cally validated. UML4PF indicates which model elements are not used correctly or

which parts of the model are not consistent. Figure 9.13 shows a screenshot

of UML4PF. As can be seen below the architectural diagram, several kinds of

diagrams are available for display.When selecting the OCL validator, the validation

conditions are checked, and the results are displayed as shown at the bottom of the

figure. Fulfilled validation conditions are displayed in green, violated ones in red.

All in all, we have defined about 80 OCL validation conditions, including

17 conditions concerning architectural descriptions. The time needed for checking

only depends on EMF and is about half a second per validation condition.

Fig. 9.16 Tool Realisation Overview
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The influence of the model size on the checking time is less than linear. About 9,800

lines of code have been written to implement UML4PF.

The tool UML4PF is still under development and evaluation. Currently it is used

in a software engineering class at the University Duisburg-Essen with about 100

participants. In this class, the problem frame approach and the method for architec-

tural design described in this chapter are taught and applied to the development of

a web application. The experience gained from the class will be used to assess (and

possibly improve) the user-friendliness of the tool.

Moreover, UML4PF will be integrated into the tool WorkBench of the European

network of excellence NESSoS (see http://www.nessos-project.eu/). With this

integration, we will reach a wider audience in the future. Finally, the tool is

available for download at http://swe.uni-due.de/en/research/tool/index.php.

9.7 Related Work

Since our approach heavily relies on the use of patterns, our work is related to

research on problem frames and architectural styles. However, we are not aware of

similar methods that provide such a detailed guidance for developing software

architectures, together with the associated validation conditions.

Lencastre et al. [19] define a meta-model for problem frames using UML. Their

meta-model considers Jackson’s whole software development approach based on

context diagrams, problem frames, and problem decomposition. In contrast to our

meta-model, it only consists of a UML class model without OCL integrity

constraints. Moreover, their approach does not qualify for a meta-model in terms

of MDA because, e.g., the class Domain has subclasses Biddable and Given,
but an object cannot belong to two classes at the same time (cf. Figs. 5 and 11 in

[19]).

Hall et al. [20] provide a formal semantics for the problem frame approach. They

introduce a formal specification language to describe problem frames and problem

diagrams. However, their approach does not consider integrity conditions.

Seater et al. [21] present a meta-model for problem frame instances. In addition

to the diagram elements formalised in our meta-model, they formalise requirements

and specifications. Consequently, their integrity conditions (“wellformedness pred-

icate”) focus on correctly deriving specifications from requirements. In contrast,

our meta-model concentrates on the structure of problem frames and the different

domain and phenomena types.

Colombo et al. [22] model problem frames and problem diagrams with SysML

[13]. They state that “UML is too oriented to software design; it does not support
a seamless representation of characteristics of the real world like time, phenomena
sharing [. . .]”. We do not agree with this statement. So far, we have been able to

model all necessary means of the requirements engineering process using UML.

Charfi et al. [23] use a modelling framework, Gaspard2, to design high-

performance embedded systems-on-chip. They use model transformations to move
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from one level of abstraction to the next. To validate that their transformations were

performed correctly, they use the OCL language to specify the properties that must

be checked in order to be considered as correct with respect to Gaspard2. We have

been inspired by this approach. However, we do not focus on high-performance

embedded systems-on-chip. Instead, we target general software development

challenges.

Choppy and Heisel give heuristics for the transition from problem frames to

architectural styles. In [24], they give criteria for choosing between architectural

styles that could be associated with a given problem frame. In [25], a proposal for

the development of information systems is given using update and query problem
frames. A component-based architecture reflecting the repository architectural style

is used for the design and integration of the different system parts. In [26], the

authors of this paper propose architectural patterns for each basic problem

frameproposed by Jackson [1]. In a follow-up paper [27], the authors show how

to merge the different sub-architectures obtained according to the patterns

presented in [26], based on the relationship between the subproblems. Hatebur

and Heisel [3] show how interface descriptions for layered architectures can be

derived from problem descriptions.

Barroca et al. [28] extend the problem frame approach with coordination
concepts. This leads to a description of coordination interfaces in terms of services
and events together with required properties, and the use of coordination rules to
describe the machine behaviour.

Lavazza and Del Bianco [29] also represent problem diagrams in a UML

notation. They use component diagrams (and not stereotyped class diagrams) to

represent domains. Jacksons interfaces are directly transformed into used/required

classes (and not observe and control stereotypes that are translated in the architec-

tural phase). In a later paper, Del Bianco and Lavazza [30] suggest enhance

problem frames with scenarios and timing.

Hall, Rapanotti, and Jackson [31] describe a formal approach for transforming

requirements into specifications. This specification is then transformed into

the detailed specifications of an architecture. We intentionally left out deriving the

specification describing the dynamic behaviour within this chapter and focus on the

static aspects of the requirements and architecture.

9.8 Conclusion and Perspectives

We have shown how software architectures can be derived in a systematic way

from problem descriptions as they are set up during the requirements analysis

phase of software development. In particular, our method builds on information

that is elicitated when applying (an extension of) the problem frame approach.

The method consists of three steps, starting with a simple initial architecture.

That architecture is gradually refined, resulting in a final layered architecture. The

refinement is guided by patterns and stereotypes. The method is independent of
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system characteristics – it works e.g., for embedded systems, for web-applications,

and for distributed systems as well as for local ones. Its most important advantages

are the following:

• The method provides a systematic approach to derive software architectures

from problem descriptions. Detailed guidance is given in three concrete steps.

• Validation conditions for each step help to increase the quality of the results.

These conditions can be checked automatically.

• The subproblem structure can be exploited for setting up the architecture.

• Most interfaces can be derived from the problem descriptions.

• Only one model is constructed containing all the different development artifacts.

Therefore, traceability between the different models is achieved, and changes

propagate to all graphical views of the model.

• Frequently used technologies are taken into account by stereotypes. The stereo-

type hierarchy can be extended for new developments.

• Stereotypes guide the introduction of new components.

• Adapters can be generated automatically (based on stereotypes).

• The application components use high-level phenomena from the applica-

tion domain. Thus, the application components are independent of the used

technology.

• Re-use of components is supported.

The method presented in this chapter can be extended to take other software

development artefacts into account. For example, sequence diagrams describing the

externally visible behaviour of machine domains can be used to derive behavioural

descriptions of the architectural components. In the future, we will extend our

approach to support the development of design alternatives according to quality

requirements, such as performance or security, and to support software evolution.

On the long run, the method can also be extended to cover further phases of the

software development lifecycle.

Acknowledgments We would like to thank our anonymous reviewers for their careful reading

and constructive comments.

References

1. Jackson M (2001) Problem Frames. Analyzing and structuring software development

problems. Addison-Wesley, Boston

2. UML Revision Task Force (2009) OMG Unified Modeling Language: Superstructure, avail-

able at http://www.omg.org/spec/UML/2.2/Superstructure/PDF/, last checked: 2011-06-14

3. Hatebur D, Heisel M (2009) Deriving software architectures from problem descriptions.

In: Software Engineering 2009 – Workshopband pp 383–302 GI

4. Eclipse – An open development platform (2008) May 2008. http://www.eclipse.org/, last

checked: 2011-06-14

5. Eclipse Modeling Framework Project (EMF) (2008) May 2008. http://www.eclipse.org/

modeling/emf/, last checked: 2011-06-14

9 Systematic Architectural Design Based on Problem Patterns 157

http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://www.eclipse.org/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/


www.manaraa.com

6. Papyrus UML Modelling Tool (2010) Jan 2010. http://www.papyrusuml.org, last checked:

2011-06-14

7. Yu E (1997) Towards modelling and reasoning support for early-phase requirements engi-

neering. In: Proceedings of the 3 rd IEEE Intern. Symposium on RE pp 226–235

8. Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J (2004) Tropos: an agent

oriented software development methodology. Auton Agents Multi-Agent Syst 8(3):203–236

9. Bertrand P, Darimont R, Delor E, Massonet P, van Lamsweerde A (1998) GRAIL/KAOS: an

environment for goal driven requirements engineering. In ICSE’98 – 20th International

Conference on Software Engineering, New York

10. Bass L, Clements P, Kazman R (1998) Software architecture in practice. Addison-Wesley,

Massachusets, first edition

11. Shaw M, Garlan D (1996) Software architecture. Perspectives on an emerging discipline.

Prentice-Hall, Upper Saddle River

12. UML Revision Task Force (2009) OMG Unified Modeling Language: Infrastructure. avail-

able at http://www.omg.org/spec/OCL/2.0/, last checked: 2011-06-14

13. SysML Partners (2005) Systems Modeling Language (SysML) Specification. see http://www.

sysml.org, last checked: 2011-06-14
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Dirigée par les Modèles (IDM 08)
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Chapter 10

Adaptation Goals for Adaptive Service-Oriented

Architectures*

Luciano Baresi and Liliana Pasquale

Abstract Service-oriented architecture supports the definition and execution of

complex business processes in a flexible way. A service-based application

assembles the functionality provided by disparate, remote services in a seamless

way. Since the architectural style prescribes that all features be provided remotely,

these applications adapt to changes and new business needs by selecting new

partner services to interact with. Despite the success of the architectural style,

a clear link between the actual applications and the requirements they are supposed

to meet is still missing. The embedded dynamism also imposes that requirements

properly state how an application can evolve and adapt at runtime. We solve these

problems by extending classical goal models to represent both conventional (func-

tional and non-functional) requirements and adaptation policies. The goal model is

then used to automatically devise the application’s architecture (i.e., the composi-

tion) and its adaptation capabilities. It becomes a live, runtime entity whose

evolution helps govern the actual adaptation of the application. All key elements

are exemplified through a service-based news provider.

10.1 Introduction

In these years, Service-oriented Architecture (SoA) has proven its ability to support

modern, dynamic business processes. The architectural paradigm fosters the provi-

sion of complex functionality by assembling disparate services, whose ownership –

and evolution – is often distributed. The composition, oftentimes rendered in BPEL

[18], does not provide a single integrated entity, but it only interacts with services

that are deployed on remote servers. This way of working fosters reusability by

gluing existing services, but it also allows one to handle new business needs by

adding, removing, or substituting the partner services to obtain (completely)
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different solutions. So far the research in this direction has been focused on

proposing more and more dynamic service compositions, neglecting the actual

motivations behind them. How to implement a service-based application has been

much more important than understanding what the solution has to provide and

maybe how it is supposed to evolve and adapt. A clear link between the actual

architectures – also referred to as service compositions – and the requirements they

are supposed to meet is still missing. This lack obfuscates the understanding of the

actual technological infrastructure that must be deployed to allow the application to

provide its functionality in a robust and reliable way, but it also hampers the

maintenance of these applications and the alignment of their functionality with the

actual business needs. These considerations motivated the work presented in this

chapter. We firmly believe that service-based applications must be conceived from

clearly stated requirements, which in turn must be unambiguously linked to the

services that implement them. Adaptation must be conceived as a requirement in

itself and must be properly supported through the whole lifecycle of the system. It

must cope with both the intrinsic unreliability of services and the changes imposed by

new business perspectives. To this aim, we extend a classical goal model to provide

an innovative means to represent both conventional (functional and non-functional)

requirements and adaptation policies. The proposal distinguishes between crisp goals,

the satisfiability of which is boolean, and fuzzy goals, which can be satisfied at

different degrees; adaptation goals are used to render adaptation policies.

The information provided in the goal model is then used to automatically devise

the application’s architecture (i.e., the composition) and its adaptation capabilities.

We assume the availability of a suitable infrastructure [5] – based on a BPEL

engine – to execute service compositions. Goals are translated into a set of abstract

processes (a-la BPEL) able to achieve the objectives stated in the goal model; the

designer is in charge of selecting the actual composition that best fits stated

requirements. Adaptation is supported by performing supervision activities that

comprise data collection, to gather execution data, analysis, to assess the appli-

cation’s behavior, and reaction – if needed – to keep the application on track. This

strict link between architecture and requirements and the need for continuous

adaptation led us to consider the goal model a full-fledged runtime entity. Runtime

data trigger the countermeasures embedded in adaptation goals, and thus activate

changes in the goal model, and then in the applications themselves.

The chapter is organized as follows. Section 10.2 presents the goal model to

express the requirements of the systems. Section 10.3 describes how goals are

translated into service-based applications. Section 10.4 illustrates some preliminary

evaluation; Sect. 10.5 surveys related works and Sect. 10.6 concludes the chapter.

10.2 Goal Model

This section introduces the goal model to represent requirements. Conventional

(functional and non-functional) requirements are expressed by adopting KAOS

[14], a well-known goal model, and RELAX [27], a relatively new notation for
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expressing the requirements of adaptive systems. The goal model is also augmented

with a new kind of goals, adaptation goals, which specify how the model can adapt

to changes. The whole proposal is illustrated through the definition of a news

provider called Z.com [8]. The provider wants to offer graphical news to its

customers with a reasonable response time, but it also wants to keep the cost of

the server pool aligned with its operating budget. Furthermore, in case of spikes in

requests it cannot serve adequately, the provider commutes to textual content to

supply its customers with basic information with acceptable delay.

10.2.1 KAOS

The main features provided by KAOS are goal refinement and formalization. Goal

refinement allows one to decompose a goal into several conjoined sub-goals (AND-

refinement) or into alternative sub-goals (OR-refinement). The satisfaction of the

parent goal depends on the achievement of all (for AND-refinement) or at least

one (for OR-refinement) of its underlying sub-goals. The refinement of a goal

terminates when it can be “operationalized,” that is, it can be decomposed into

a set of operations. Figure 10.1 shows the KAOS goal model of the news provider.

The general objective is to provide news to its customers (G1), which is AND-

refined into the following sub-goals: Find news (G1.1), Show news to requestors

(G1.2), Provide high quality service (G1.3), and Maintain low provisioning costs

(G1.4) (in terms of the number of servers used to provide the service). News can be

Fig. 10.1 The KAOS goal model of the news provider
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provided both in textual and graphical mode (see OR-refinement of goal G1.1 into

G1.1.1 and G1.1.2). Textual mode consumes less bandwidth and performs better in

case of many requests. Customer satisfaction is increased by providing news in

a nice format and within short response times (see AND-refinement of goal G1.3

into G1.3.1 and G1.3.2). G1.3.1 is a soft goal since there is not a clear-cut criterion

to assess it, that is, whether news is provided in a nice way.

Goals are associated with a priority depending on their criticality. For example

goal G1.1.1 has lower priority (p ¼ 2) than goal G1.1.2 (p ¼ 3), since providing

news in graphical mode is more important than providing news in text mode. Goals

can contribute (either positively or negatively) to the satisfaction of other goals.

This is represented in the goal model through contribution links – dashed lines in

Fig. 10.1 – and an indication of the contribution (x∈ [�1,1]). For example, despite

the graphical mode is slower, it positively contributes to the customer satisfaction

(contribution link between goals G1.1.2 and G1.3.1). Short response times may

require the adoption of the text mode to provide the news (see the negative link

between goal G1.3.2 and goal G1.1.2) or may increase the provisioning costs since

they may require a higher number of servers in the pool (see the link between goal

G1.3.2 and G1.4).

Goals are formalized in Linear Temporal Logic1 (LTL) [21] or First Order Logic

(FOL). The definition of the leaf goals of Fig. 10.1 is reported in Table 10.1. For

example, goal G1.1.2 states that if the system receives a request for a given

keyword and date, it must provide related news within x time units. Provided

news must be about supplied keyword and date, and must come with images.

Note that we cannot provide a formal definition for goal G1.3.1, since it is soft.

Instead, the satisfaction of this goal can be inferred from its incoming contribution

links, by performing an arithmetic mean on the satisfaction of each contributing

goal weighted by the value given to each contribution link. The formalism beneath

the goals of Fig. 10.1 is a preliminary attempt to bridge the gap between the non-

formal world of the stakeholders and the formal world of the machine. This

Table 10.1 Definition of the example’s goals

G1.1.1

r: NewsReq, nc: NewsCollection,

ReceiveRequest(r) ∧ nc.keyword ¼ “” ∧ nc.date ¼ null )
et<x (∃ n ∈ nc.news | nc.keyword ¼ r.keyword ∨ nc.date ¼ r.date ∧ n.text 6¼ null)

G1.1.2

r: NewsReq, nc: NewsCollection, ReceiveRequest(r) ∧
nc.keyword ¼ “” ∧ nc.date ¼ null ∧ (r.keyword 6¼ “”∨ r.date 6¼ null) )
et<x (∃ n ∈ nc.news | nc.keyword ¼ r.keyword ∨ nc.date ¼ r.date ∧
n.text 6¼ “” ∧ (∃ i ∈ n.images))

G1.2 nc: NewsCollection, (∃ n ∈ nc.news) ) et<y ShowNews(nc)

G1.3.2

r: NewsReq, nc: NewsCollection, ReceiveRequest(r) ∧ nc.keyword ¼ “”∧
nc.date ¼ null ∧ (r.keyword 6¼ “”∨ r.date 6¼ null) ) et< RT_MAX ShowNews(nc)

G1.4.1 servers: int, servers < NMAX

1For this example, we use operator sometimes in the future (e).
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formalism relies on background knowledge of the domain and may have several

nuances of meaning.

Operationalization [14] is the process that allows one to (semi-automatically)

infer the operations that “implement” goals, and thus in our work that partner services

must provide. An operation is defined through name, input and output values, and

pre- and post-conditions. Required preconditions (ReqPre) define when the operation
can be executed. Triggering conditions (TrigPre) define how the operation is acti-

vated. Required post-conditions (ReqPost) define additional conditions that must be

true after execution. Domain pre- (DomPre) and post-conditions (DomPost) define
the effects of the operation on the domain. Table 10.22 shows the result of the

operationalization applied to the case study (except for operation Find Text Content).
For example, operation Find Graphical Content moves the system from a state in

which a container for the news that have to be collected is initialized (DomPre) to
a state in which a set of suitable news is available (DomPost). This operation is

triggered as soon as the collection of news matching provided keyword and date is

started (TrigPre). The effect of this operation is to collect a set of news that matches

the date and keyword provided by the user (ReqPost). The definition of operation

Find Text Content is similar to operation Find Graphical Content except for the
required post-condition that is specified as follows:

Table 10.2 Definition of the example’s operations

Name: Collect requests

In/Out: r: ReceiveRequest, nc: NewsCollection

DomPre: nc.state ¼ default

DomPost: nc.state ¼ req_initialized

ReqPre: nc.keyword ¼ “” ∧ nc.date ¼ null ∧ (r.keyword 6¼ “” ∨ r.date 6¼ null)

TrigPre: ReceiveRequest(r)

ReqPost: nc.keyword ¼ r.keyword ∧ nc.date ¼ r.keyword ∧ Collect(nc.keyword, nc.date)

Name: Find graphical content

In/Out: nc: NewsCollection

DomPre: nc.state ¼ req_initialized

DomPost: nc.state ¼ news_received

ReqPre: nc.keyword ¼ “”∧ nc.date ¼ null ∧ (r.keyword 6¼ “” ∨ r.date 6¼ null)

TrigPre: Collect(nc.keyword, nc.date)

ReqPost:

8n ∈ nc.news: n.keyword ¼ nc.keyword ∨ nc.date ¼ n.date ∧
n.text 6¼ null ∧ (∃ i ∈ n.images | i.content 6¼ “”)∧ (∃ n ∈ nc.news)

Name: Provide content

Input: nc: NewsCollection

ReqPre: (∃ n ∈ nc.news)

TrigPre: @(nc.state ¼ news_received)

ReqPost: ShowNews(nc)

2Operator @ has the following meaning 0: @P � •(¬P) ∧ P
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ReqPost:

8(n ∈ nc.news | n.keyword ¼ nc.keyword ∨ nc.date ¼ n.date ∧
(∃ i ∈ n.images | i.content 6¼ “”)) ∧ ∃ n ∈ nc.news

The goal model also specifies a set of agents able to perform one or more

operations. According to our point of view, agents represent the providers of the

services that will be used in the composition. For example, agent A1 is the user

issuing the requests and to whom news must be shown. Agent A3 can find news in

both text and graphical mode, while agent A2 can only find news in text mode.

10.2.2 Fuzzy Goals

The definition of goals through LTL formulae allows one to assess whether a goal is

satisfied, but there is no way to say if it is only satisfied partially. For example, the

definition of goal G1.3.2 only allows one to assess whether the global response time

does not exceed the maximum threshold (RTMAX), but it provides no information

about the distance between the actual value and RTMAX. Furthermore the definition of

goal G1.4 only specifies whether the number of servers is lower than a certain value

NMAX, but it says nothing about the actual number of servers used in the pool. These

are only a couple of examples that made us introduce fuzzy goals, and express their

satisfaction level through real numbers between 0 and 1. Fuzzy goals are rendered

through the operators already introduced in RELAX [27] to represent non-critical

requirements: AS EARLY/LATE AS POSSIBLEf, for temporal quantities, AS CLOSE
AS POSSIBLE TO q f, to assess the proximity of quantities or frequencies (f) to
a certain value (q), AS MANY/FEW AS POSSIBLE f, for quantities (f). This way
goals G1.3.2 and G1.4 can be redefined in terms of these operators as follows:

G1.3.2: AS EARLY AS POSSIBLE t
G1.4: AS FEW AS POSSIBLE servers

Goal G1.3.2 now says that the response time tmust be as short as possible, while

goal G1.4 says that the number of servers must be as low as possible. The

assessment of goals G1.3.2 and G1.4 is guided by the membership functions

shown in Fig. 10.2 that assign a satisfaction value between 0 and 1, depending on

a b

Fig. 10.2 Membership functions for goals G1.3.2 (a) and G1.4 (b)
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the actual response time (Fig. 10.2a) and the number of used servers (Fig. 10.2b),

respectively. For example, as for goal G1.3.2 if the response time is less than 3 s, the

satisfaction is 1, if the response time is between 3 s and 7 s the satisfaction has

a value between 0 and 1, and if the response time is greater than 7 s the satisfaction

is 0. These functions are limited3 and, in general, have a triangular or trapezoidal

shape. The severity of membership functions can be measured in terms of the

gradient of the inclined sides. The severity can be tuned according to the priority

of a goal (the higher the priority is, the steeper the membership function becomes).

10.2.3 Adaptation Goals

Adaptation goals augment the KAOS model to describe and tune the adaptation

capabilities associated with the system-to-be that are necessary to react to changes

or to the low satisfaction of conventional goals. An adaptation goal defines

a sequence of corrective actions to preserve the overall objective of the system.

Each adaptation goal is associated with a trigger and a set of conditions. The trigger
states when the adaptation goal must be activated. Conditions specify further

necessary restrictions that must be true to allow the corresponding adaptation

actions to be executed. Conditions may refer to properties of the system (e.g.,

satisfaction levels and priorities of other goals, or adaptation goals already

performed) or domain assumptions. Each adaptation goals is operationalized

through actions.

• Add, remove, or modify a conventional goal;

• Add, remove, or modify an adaptation goal;

• Add or remove an operation;

• Add or remove an entity;

• Perform an operation, moves the process execution to the activity in which the

operation, provided as parameter, starts to be performed (i.e., the first activity in

the process flow associated with that operation);

• Perform a goal, moves the process execution to the activity in which the goal,

provided as parameter, starts to be active (i.e., the first activity in the process

flow associated with the first operation of the goal);

• Substitute agent.

Adaptation actions can be applied globally, on all (next/running) process

instances, or locally (only on the application instance for which the triggers and

conditions of that adaptation goal are satisfied). Adaptation goals may also conflict

when they are associated with conflicting goals (i.e., a couple of goals linked by

a contribution link with a negative weight). In this case, we trigger the adaptation

goal associated with the goal with the highest priority.

3Membership functions do not continue to be greater than 0 when the response time is infinite.
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The adaptation goals envisioned for our example are shown in Fig. 10.3. Adap-

tation goals AG1 and AG2 are triggered when goal G1.1.2 is violated (i.e., its

satisfaction is less than 1). AG1 is performed when the satisfaction of goal G1.1.2 is

less than 0.7 and comprises two basic actions: it changes the agent that performs

operation Find Graphical Content with another one (e.g., A5) and executes the

same operation. These actions are applied locally, only for the instance of the goal

model (and indeed, the process instance) for which the triggers and conditions hold

true. The objective of this countermeasure is to enforce the satisfaction of goal

G1.1.2. Adaptation goal AG2 is applied when the satisfaction of goal G1.1.2 is less

than 0.7 and AG1 has been already applied. AG2 performs operation Find Text
Content, and enforces a modified version of goal G1.1.2 (i.e., enforces goal G1.1.1

instead of G1.1.2). AG2 is also applied locally. Adaptation goals AG3 and AG4 are

triggered when goal G1.3.2 is violated. In particular they are applied when the

average value of the end-to-end response time of the news provider is greater than

3 s (conditions). AG3 enforces the satisfaction of goal G1.3.2 by switching to

textual news (i.e., it substitutes goal G1.1.2 with goal G1.1.1 and operation Find
Graphical Content with Find Text Content). AG3 is applied globally on all process
instances. If AG3 is not able to reach its objective, AG4 is applied. Instead, it tries to

enforce the satisfaction of goal G1.3.2, by incrementing the number of servers in the

pool according to the severity of violation (it performs operation Increment
Servers). Operation Increment Servers can only be performed by agent A4 and

modifies the number of servers used by the load balancer. AG4 is also applied on all

process instances. Adaptation goals AG1 is in conflict with AG3 and AG4 since

they try to enforce conflicting goals. According to our policy, AG3 and AG4 are

triggered first, since they are associated with goal G1.3.2, which has higher priority

(p ¼ 5) than G1.1.2 (p ¼ 3).

Fig. 10.3 Adaptation goals for the news provider
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10.3 From Goals to Self-adaptive Compositions

This section illustrates our proposal to transform the goal model into running, self-

adaptive service-oriented compositions. The operationalization of conventional

goals is used to derive suitable compositions, while adaptation goals help deploy

probes needed to collect enough data for the runtime evaluation of goals’ satisfac-

tion. They are also in charge of adaptation actions.

10.3.1 Runtime Infrastructure

The runtime infrastructure works at two different levels of abstractions: process and

goal level.

• The process level provides a BPEL engine to support the execution of the

process instances. It also performs data collection and adaptation activities.

Data collection activities gather the runtime data needed to update the state of

entities, detect events, and evaluate the satisfaction of goals. Data to be collected

can be internal (they belong to the process state), or external (they belong to

the environment, and are retrieved by invoking external probes). Adaptation

activities apply the actions associated with adaptation goals. Different probes

and adaptation components can be easily plugged-in to obtain a complete

execution platform.

• The goal level keeps a live goal model for each process instance, and updates it

by means of the data collected at process level. Every time an instance of the

goal model is updated, the infrastructure re-computes the satisfaction of con-

ventional goals. Specific analyzers can be plugged-in to when necessary,

depending on the kind of constraint (i.e., LTL, FOL, fuzzy) that must be

evaluated to assess a goal. The goal level also evaluates the triggers and

conditions of the adaptation goals and decides when adaptation must be

performed. Adaptation actions can affect both the goal model and the process

instances. The interplay between the goal and process levels is supported in the

infrastructure by a bidirectional mapping between the elements of the two levels.

Figure 10.4 shows the overall architecture of the runtime infrastructure. The

BPEL Engine is an instance of ActiveBPEL Community Edition Engine [1] aug-

mented with aspects [13] to collect internal data and start/stop the process’ execu-

tion when necessary. The Data Collector coordinates the different probes; the

Adaptation Farm oversees the activities of recovery components. The Supervision
Manager, based on JBoss rule engine [22], receives data from the process level,

and triggers the updates of the goal level. Also the Goal Reasoner is based on JBoss
rule engine: for each running process instance it keeps a goal model in its working

memory and updates it. The Goal Reasoner asks the Analysis Farm, which

coordinates analyzers, to (re-)compute the (degree of) satisfaction of the different
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leaf goals every time new data from the process level feed the goal model. TheGoal
Reasoner evaluates the triggers and conditions associated with adaptation goals and
initiate their execution if needed. This means that the Goal Reasoner can modify

the goal model and propagate the effects of adaptation at the process level. These

effects are then applied onto the process instances by using the Recovery Farm,
through the Supervision Manager.

10.3.2 Service Compositions

Service compositions are rendered as BPEL processes. Their activities, events, and

partner services have a direct mapping onto the operations, entities, and agents of

the goal model. Our assumption is that all operations associated with the same goal

define a sequence and are not interleaved with the operations associated with other

goals. The definition of a complete process requires the composition of these

sequences and the transformation of their operations into the “corresponding”

BPEL activities. Each sequence is defined by encoding the operations associated

with each goal in Alloy to check whether there exists a possible sequence of

operations whose execution guarantees the satisfaction of the corresponding goal.

Interested readers can refer to [19] for a complete presentation. In general,

a sequence s1 can unconditionally precede s2 if the ending operation of s1, op1,
and the starting operation of s2, op2 satisfy (10.1). While a sequence s1 condition-

ally precedes s2 if the ending operation of s1 and the starting operation of s2, op2,
satisfy (10.2). In this last case an if activity is inserted in the BPEL process between

s1 and s2, and its condition must correspond to the required precondition of op2.

Fig. 10.4 Runtime infrastructure
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domPost op1ð Þ ! domPre op2ð Þð Þ^
reqPost op1ð Þ ! reqPost op2ð Þ ^ trigPre op2ð Þð Þ (10.1)

domPostðop1Þ ! domPre op2ð Þð Þ^
trigPre op1ð Þ ! trigPre op2ð Þð Þ ^ reqPre op2ð Þ ! reqPost op1ð Þð Þ (10.2)

For example Fig. 10.5a shows two possible sequences of operations. Since

operation Find Text Content and Find Graphical Content are mutually exclusive,

we select the first one to satisfy goal G1.1.2 (p ¼ 3). This is because it is more

critical than goal G1.1.1 (p ¼ 2), which is associated with operation Find Text
Content. The generation of BPEL activities is semi-automatic. When an operation,

in the goal domain, is translated into different sequences of BPEL activities, the

user must select the most appropriate. Rules for translating operations into BPEL

activities are the following:

1. If a required postcondition only contains an event, we generate one of the

following activities: invoke, invoke-receive, or reply.
2. If the triggering precondition does not contain any event and the required

postcondition changes some entities, we generate an assign for each change.

Collect Requests

Find Graphical 
Content

Find Text
Content

Provide Content

Increment 
Servers

Receive Req
(date, keyword)

Assign
date --> nc.date

keyword --> nc.keyword

Invoke News Provider
(nc.date, nc.keyword)

Receive News
(news)

Assign News
(news --> nc.news)

Reply
(nc)

Collect Requests

Find
Graphical
Content

Provide Content

nc = NewsCollection

S1 --> customer (A1)
S2 --> news provider (A3)

a b

Fig. 10.5 (a) Two possible sequences of operations and (b) an abstract BPEL process
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3. If the triggering precondition contains an event, it is translated into a pick. If the
event refers to a temporal condition, it is translated into a pick on_alarm.

4. If rule 1 and 2 are true at the same time, we generate an invoke-receive followed
by the set of assigns.

5. If rule 1 and 3 are verified at the same time, we generate an invoke, or a pick, or
an invoke-receive.

6. If rule 2 and 3 are verified at the same time, we generate either a pick or a receive,
and then a set of assigns.

The operations devised for the news provider are translated into the sequence of

activities shown in Fig. 10.5a. Operations Collect Requests and Find Graphical
Content follow rules 2 and 3. Since event Collect appears in the definition of both

operations, invoke News Provider is generated only once. Operation Provide
Content, instead, follows rule 1. The same applies also for those operations used

in adaptation goals. For example, operation Increment Servers follows rule 1 and is
simply translated into an invoke.

After identifying a proper sequence of BPEL activities, we must link entities and

agents to proper process variables and partner links. Each entity used in the

operationalization of conventional goals is rendered as an internal variable of the

process. For example, our process has an internal variable called NewsCollection,
which corresponds to entity NewsCollection. We also create a partner link for each

agent and we assume that the user manually inserts its endpoint reference. In our

example, we need partner services S1, S2, S3, S5 that match agents A1, A2, and A3,

A5 respectively. Furthermore, we map agent A4 to another service S4 in charge of

modifying the number of adopted servers.

10.3.3 Adaptation

The interplay between the process and goal levels is supported by the mapping of

Table 10.3. Each conventional goal, which represents a functional requirement (i.e.,

it is operationalized), is mapped onto the corresponding sequence activity in the

BPEL process (XPath expression). If the goal represents a non-functional require-

ment, but its nearest ancestor goal is operationalized, it is associated with the same

sequence of its parent goal. The XPath expression provides the scope for both

Table 10.3 Mapping goals to runtime data

Conventional goal (leaf) XPath to the sequence in the BPEL process

Operation

• XPath to the first activity associated with the operation

• XPath to the last activity associated with the operation

Agent Partner link

Entity Internal or external data

Event XPath to a corresponding process activity

Adaptation goal Recovery actions at process level
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possible adaptation actions and for assessing the satisfaction of the goal (i.e., it

defines the activities that must be probed to collect relevant data). Each operation is

associated with the first and the last BPEL activities, associated with it through two

XPath expressions. Each agent is associated with a partner service; the user

manually inserts the actual binding. All events are mapped to an XPath pointing

to the corresponding activity in the BPEL process. This activity must represent

an interaction of the process with its partner services (e.g., invoke, pick, receive).
Each adaptation goal is associated with a set of actions that must be performed at

process level.

Data collection specifies the variables that must be collected at runtime to update

the live instance of the goal model associated with the process instance. Data are

collected by a set of probes that mainly differ on how (push/pull mode), and when

(periodically/when certain events take place) data must be collected. If data are

collected in push mode, the Supervision Manager just receives them from the

corresponding probes, while if they are collected in pull mode, the Supervision
Manager must activate the collection (periodically or at specific execution points)

through dedicated rules. To evaluate the degree of satisfaction of each goal, its

formal definition must be properly translated to be evaluated by the selected

analyzer. The infrastructure provides analyzers for FOL and LTL expressions, for

crisp goals, and also provide analyzers to evaluate the actual satisfaction level of

fuzzy goals. To this end, we built on our previous work and exploit the monitoring

components provided by ALBERT [3], for LTL expressions, and Dynamo [4] for

both FOL expressions and fuzzy membership functions.

To enact adaptation goals at runtime, the Goal Reasoner evaluates a set of rules
on the live instances of the goal model available in its working memory. Each

adaptation goal is associated with three kinds of JBoss rules. A triggering rule,

activates the evaluation of the trigger associated with the goal. A condition rule

evaluates the conditions linked to the goal. If the two previous rules provide

positive feedback, an activation rule is in charge of the actual execution of the

adaptation actions. They are performed when an adaptation goal can potentially fire

(i.e., the corresponding Activation fact is available in the working memory) and is

selected by the rule engine to be performed, among the other adaptation goals that

can be performed as well. It executes the actions associated with that adaptation

goal. For example, the triggering rule associated with AG1 is the following:

when

Goal(id¼¼"G1.1.2", satisfaction < 1, $pid: pID)

then

wm.insert(new Trigger("TrigAG1", pid));

It is activated when the satisfaction of goal G1.1.2 is less than 1. This rule inserts

a new Trigger fact in the working memory of the Goal Reasoner, indicating that the

trigger associated with adaptation goal AG1 is satisfied for process instance pid.

10 Adaptation Goals for Adaptive Service-Oriented Architectures 173



www.manaraa.com

The corresponding condition rule is:

when

$t: Trigger(name ¼¼ "TrigAG1", $pid: pID)
Goal(id¼¼"G1.1.2", satisfaction < 0.7, pID ¼¼ pid)
$adGoal: AdaptationGoal(name¼¼"AG1",
$maxNumAct: maxAct, numOfActivations < $maxNumNAct)

then

wm.remove($t); wm.insert(new Activation("AG1", pid));

It is activated when the condition associated with AG1 (the satisfaction of goal

G1.1.2 is less than 0.7) is satisfied, the trigger of AG1 has taken place, and AG1 has

been tried less than a maximum number of times (maxNumAct). It inserts a new fact

in the working memory (Activation), to assert that the adaptation actions associated
with goal AG1, for the process instance and the goal model corresponding to pid
can be performed.4 The action rule is:

salience 3
activation-group recovery
when

$a: Activation(name ¼¼ "AG1", $pid: pID)
$ag: AdaptationGoal(name¼¼"AG1", pID ¼¼ pid)

then
List<Action> actions ¼ new ArrayList<Action>();
actions.add(new SubstituteAgent("A3","A5"));
actions.add(new Perform("Find Graphical Content");
ag.numOfActivations++;
Adaptation adapt ¼ new Adaptation("AG1", actions,"instance", pid);
adapt.perform(); wm.remove(a);

Action rules have a priority (salience) equal to that of the goal they refer to

(G1.1.2, in this case) and are always associated with activation-group recovery.
This means that, once the rule with the highest priority fires, it automatically

cancels the execution of the other adaptation goals that could be performed at the

same time. Adaptation actions are performed when the triggers and conditions of

the adaptation goal are satisfied (e.g., the corresponding activation object (a) is
asserted in the working memory). The example rule performs the adaptation actions

(adapt.perform()) on process instance (pid). Finally, it removes the object (a) that
activated this adaptation.

4Note that if an adaptation goal is applied globally, there is no need to identify the process instance

on which adaptation must be performed.
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Adaptation actions associated with AG1 have no consequences on the goal

model since they only require that the process re-execute the activities associated

with operation Find Graphical Content by using another agent. At the process level
these actions are applied locally and substitute partner service S1 with another one

and restore the execution to operation Find Graphical Content. This is achieved
through a Dynamo recovery directive that configures AOP probes to intercept the

process execution before activity invoke News Provider and invoke operation

rebind(S3, S2.wsdl), that takes in input the name of the partner service to be sub-

stituted and the wsdl exposed by the new partner service to be adopted. After

this operation is performed, the execution can proceed. This is only feasible

with stateless services: in general, the application of an adaptation action cannot

compromise the internal state of the process and that of its partner services.

If we consider adaptation goal AG3, it is applied globally and substitutes goal

G1.1.2 and operation Find Graphical Content with goal G1.1.1 and operation Find
Text Content, respectively. To this aim, we deploy a new version of the process,

shown in Fig. 10.6, for the next process instances. To apply AG3 on the running

process instances we intercept the process execution just before activity invoke
News Provider is performed. If a process instance has overtaken this execution

point, it cannot be migrated. At this point, we substitute the activities associated

with operation Find Graphical Content with the activities of the alternative

Invoke Text News
(nc.date, nc.keyword)

Receive News
(news)

Collect Requests

Provide content

nc --> NewsCollection

p1 --> customer
p2' --> text news provider

Receive Req
(date, keyword)

Assign
date --> nc.date

keyword --> nc.keyword Alternative Execution Path

Reply
(nc)

Assign News
(news --> nc.news)

Fig. 10.6 Adapted process for Z.com
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execution path, shown in Fig. 10.6. Then, the process execution proceeds, per-

forming the activities of the alternative execution path.

10.4 Preliminary Validation

The validity of the proposed goal model has been evaluated by representing some

example applications commonly used by other approaches proposed to model self-

adaptive systems: an intelligent laundry [6], a book itinerary management system

[23], and a garbage cleaner [16]. These experiments said that our goal model proved

to be expressive enough to represent the main functionality of these systems

together with their adaptation scenarios.

In the first case study, a laundry system must distribute assignments to the

available washing machines and activate their execution. The system must also

guarantee a set of fuzzy requirements stating that the energy consumed must not

exceed a maximum allowed and the number of clothes that have to be washed must

be low. These requirements are fuzzy since their satisfaction depends on the number

of clothes to be washed and the amount of energy consumed, respectively. The

satisfaction level of the energy consumed allows us to tune the duration of the

washing programs accordingly. The adaptation goals devised for this case study also

allow us to detect transient failures (e.g. the washing machine turns off suddenly)

and activate an action that performs an operation to restart a washing cycle.

The itinerary booking system must help business travellers book their travels and

receive updated notifications about the travel status (e.g., delays, cancelled flights).

These notifications can be sent via email or SMS depending on the device the

customer is actually using (i.e., laptop or mobile phone). Since sending an SMS is

the most convenient option, we decided to adopt it in the base goal model of this

case study. Suitable adaptation goals allow us to detect, through a trigger (i.e.,

whether the mobile phone is turned off) and a condition (i.e., whether the email of

the customer’s secretary is part of the information provided by the customer), when

the customer’s mobile phone is turned off, and apply an adaptation action that sends

an email to him/her.

In the cleaner agent scenario, each agent is equipped with a sensor to detect the

presence of dust and its driving direction. In case an agent finds a dirty cell, it must

clean it, putting the dust in its embedded dustbin. The adaptation goals envisioned

for this example allow the cleaner agent to recharge its battery when the load level

is low. Furthermore, they allow us to cover a set of failure prevention scenarios.

For example, adaptation goals can detect known symptoms of battery degenera-

tion (e.g., suddenly reduced lifetime or voltage) and perform an operation to alert

a technician, or get a new battery. Adaptation goals can also detect the presence of

obstacles in the driving direction of an agent and activate two actions: stop the agent

and change the driving direction, when possible.

These exercises demonstrated to be very useful to highlight both the advan-

tages and disadvantages of our approach. We can perform accurate and precise
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adaptations by assessing the satisfaction degree of soft goals and tuning the

adaptation parameters accordingly, as described before. The usage of triggers and

conditions makes it possible to react after system failures or context changes,

and also model preventive adaptations to avoid a failure when known symptoms

take place.

We adopt a priority-based mechanism to solve conflicts among adaptations that

can be triggered at the same time. This mechanism is still too simplistic in certain

situations. For example a vicious cycle may exist when a countermeasure A has

a negative side effect on another goal, and that goal’s countermeasure B has

a negative side effect on the first goal as well. These cases can be handled by

tuning the conditions of the countermeasures involved, which would become pretty

complex. For this reason, other decision-making mechanisms should be adopted,

like trade-off optimization functions. Finally our goal model does not provide

any reasoning mechanism to automatically detect possible adaptations in advance,

after changes in the context and in the stakeholders’ requirements take place.

10.5 Related Work

Our proposal aims to provide a goal-based methodology to model the requirements

of service compositions, that is, the architecture of service-based applications.

Cheng et al. [7] proposed a similar approach for self-adaptive systems in general.

The authors detect the reasons (threats) that may cause uncertainty in the satisfaction

of goals, and propose three strategies for their mitigation: add new functionality,

tolerate uncertainty, or switch to a new goal model that is supposed to repair the

violation. Instead our strategies do not constraint the ways a goal model can be

modified, but they can have different objectives and severity. These features allow

us to solve conflicts among strategies and provide ways to apply them at runtime.

Also Goldsby et al. [10] use goal models to represent the non-adaptive behavior of

the system (business logic), the adaptation strategies (to handle environmental

changes) and the mechanisms needed by the underlying infrastructure to perform

adaptation. These proposals only handle adaptation by enumerating all alternative

paths at design time. In contrast, we support the continuous evolution of the goal

model by keeping a live goal model for each process instance and by modifying it

at runtime. Different works have tried to link compositions with the business

objectives they have to achieve. For example, Kazhamiakin et al. [12] adopt Tropos

to specify the objectives of the different actors involved in choreography. Tropos

tasks are refined into message exchanges, suitable annotations are added to express

conditions on the creation and fulfillment of goals, and assume/guarantee conditions

are added to the tasks delegated to partner services. These elements enable the

generation of annotated BPEL processes. These processes can only be verified

statically through model checking, ours also embed self-adaptation capabilities.

Another similar approach is the one proposed by Mahfouz et al. [15], which models

the goals of each actor and also the dependences among them. Actor dependencies
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take place when a task performed by an actor depends on another task performed by

a different actor. Dependencies are then translated into message sequences

exchanged between actors, and objectives into sets of local activities performed in

each actor’s domain. The authors also propose a methodology to modify choreogra-

phy according to changes in the business needs (dependencies between actors and

local objectives). Although this approach traces changes at requirements level, it

does not provide explicit policies to apply these changes at runtime.

The idea of monitoring requirements was originally proposed by Fickas et al.

[9]. The authors adopt a manual approach to derive monitors able to verify

requirements’ satisfaction at runtime. Wang et al. [26] use the generation of log

data to infer the denial of requirements and detect problematic components. Diag-

nosis is inferred automatically after stating explicitly what requirements can fail.

Robinson [24] distinguishes between the design-time models, where business goals

and their possible obstacles are defined, and the runtime model, where logical

monitors are automatically derived from the obstacles and are applied onto the

running system. This approach requires that diagnostic formulae be generated

manually from obstacle analysis. Despite a lot of work focused on monitoring

requirements, only few of them provide reconciliation mechanisms when require-

ments are violated. Wang et al. [26] generate system reconfigurations guided by

OR-refinements of goals. They choose the configuration that contributes most

positively to the non-functional requirements of the system and also has the lowest

impact on the current configuration. To ensure the continuous satisfaction of

requirements, one needs to adapt the specification of the system-to-be according

to changes in the context. This idea was originally proposed by Salifu et al. [25] and

was extensively exploited in different works [2, 20] that handled context variability

through the explicit modeling of alternatives. Penserini et al. [20] model the

availability of execution plans to achieve a goal (called ability), and the set of

pre-conditions and context-conditions that can trigger those plans (called oppor-

tunities). Dalpiaz e al. [2] explicitly detect the parameters coming from the external

environment (context) that stimulate the need for changing the system’s behavior.

These changes are represented in terms of alternative execution plans. Moreover the

authors also provide precise mechanisms to monitor the context. All these works

are interesting since they address adaptation at requirements level, but they mainly

target context-aware applications and adaptation. They do not consider adaptations

that may be required by the system itself because some goals cannot be satisfied

anymore, or new goals are added. We foresee a wider set of adaptation strategies

and provide mechanisms to solve conflicts among them.

Despite our solution is more tailored to service-based applications, many works

[11, 16] focus on multi agent systems (MAS). Morandini et al. [16], like us, start

from a goal model, Tropos4AS [17] which enriches TROPOS with soft goals,

environment entities, conditions relating entities and state transitions, and unde-

sired error states. The goal model is adopted to implement the alternative system

behaviors that can be selected given some context conditions. Huhns et al. [11]

exploit agents to support software redundancy, in terms of different implemen-

tations, and provide software adaptation. The advantage here is that agents can be
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added/removed dynamically; this way, the software system can be customized at

runtime and become more robust. The main advantage of these agent-based systems

is their flexibility, since adaptation actions are applied at the level of each single

component. On the other hand, MAS provide no guarantees that agents cannot

perform conflicting actions or that the main system’s objectives are always

achieved. Our approach, instead, is centralized and declares adaptation actions at

the level of the whole system. Adaptation is simply achieved by adding, removing,

and substituting components, since the SOA paradigm does not allow us to change

the internal behavior of a component.

10.6 Conclusions

This chapter proposes an innovative approach to specify adaptive service-oriented

architectures/applications. The work extends the KAOS goal model and accom-

modates both conventional (functional and non-functional) requirements and the

requirements on how the system is supposed to adapt itself at runtime. Goals can be

crisp, when their satisfiability is boolean, fuzzy, when they can also be partially

satisfied, and related to adaptation, when they specify adaptation policies. The

proposal also explains how to map the “comprehensive” goal model onto the

underlying architecture. Conventional goals are used to identify the best service

composition that fits stated requirements. Adaptation goals are translated in data

collection directives and sequences of concrete adaptation actions. The first assess-

ment provided positive and interesting results. We are already working on extend-

ing the tool support and on adopting our proposal to model other self-adaptive

service compositions.

Our proposal represents a preliminary step towards linking the non-formal world

of the stakeholders with the formal world of the machine. We assume not to have

a full codification of the system and, instead, try to find a tradeoff between

a completely specified system, where adaptation is fully automated, and the infor-

mal requirements of stakeholders. Finally we also assume to rely on experts

anadopt customized solutions.
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Chapter 11

Business Goals and Architecture

Len Bass and Paul Clements

Abstract Software systems exist to fulfill the business goals of organizations –

developing organizations, purchasing organizations, user organizations, and others –

and these goals turn out to be a significant source of requirements. These

requirements are not currently well understood and are seldom captured explicitly,

yet they can have a profound effect on the architecture for a system. Systems that

meet the published requirements but do not satisfy the important business goals are

considered failures. Our research has produced a standard categorization of busi-

ness goals that can be used to aid in elicitation and capture. We have also created

a form for a business goal scenario, which is an expression to capture a stakeholder’s

business goal in an unambiguous form, along with its pedigree, by which we mean

its source, value, and stability. Finally, we have used these developments to create

a lightweight method that architects can use to interview important stakeholders

and elicit and record their business goals. The method also includes a step in which

the architectural ramifications of the business goal (in the form of quality attribute

requirements) are compared against the existing requirements for the system, to

help spot missing requirements and requirements that have no basis in business

goals. All of this is intended to empower an architect to ask the right questions early

in the development process, when the architecture is being crafted.

11.1 Introduction

Computer systems are constructed to satisfy business goals. Yet, even knowing this,

determining the business goals for a system is not an easy chore. First, there are

multiple stakeholders for a system, all of whom usually have distinct business

goals. Secondly, there are business goals that are not explicitly articulated and

must be actively elicited. Finally, the initial statement of some business goals is

unreasonable in their strictness.

If systems are constructed to satisfy business goals then that makes it imperative

that the requirements that drive the design of the system reflect those business goals.

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_11, # Springer-Verlag Berlin Heidelberg 2011
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Yet in our experience, requirements documents are generally deficient in providing

these requirements, which are often most important from an architect’s perspective

because they drive quality attribute goals. There are at least two possible reasons for

this deficiency.

The authors of the requirements documents do not have access to all of the business

goals for a particular system. These goals may not have been captured in any

systematic fashion. Or perhaps the development organization is not the same

organization as the one that originated the requirements, in which case the

business goals of the developers were likely not recognized. Or, as is often the

case, an organization’s business goals only exist implicitly or do not cover

the aspirations and needs of any but the highest-level executives.

Requirements documents tend to dwell on the functional requirements, not the

quality attribute requirements (by which we mean requirements for perfor-

mance, modifiability, security, and the like). Yet the quality attribute require-

ments are the ones that drive architectural design.

In either case, the result is that the architect lacks critical information on which

to base the design.

Even if requirements do reflect business goals, they seldom capture the

requirements’ pedigree. For example, suppose a competitor’s product has a

response time for a particular operation of 2 s. We want our product to be superior,

so our product’s requirement will call for a response time of 1.8 s for a similar

operation. Yet if, during development time, the competitor releases a system with

a response time of 1.6 s, it’s very doubtful that our requirements document will

change. If the architect knows that the goal is to beat the competitor’s response time

with respect to this particular operation, then the architect would know that with the

release of the competitor’s new version the requirement has changed in the system

the architect is currently developing.

A system’s architect needs to know those business goals that impinge on the

architecture. The architecture must reflect the priorities and schedule needs of its

stakeholders. For example, if time to market is a dominant business goal, then

one set of architectural choices is appropriate. But if some aspect of quality

predominates, then another set. Business goals may be expressed to the architect

in terms of quality attribute requirements or in terms of constraints on the

architecture.

In this paper, we present a body of knowledge that allows more precise elicita-

tion and specification of business goals. The body of knowledge is based on

an analysis of the business literature and its application to specific systems.

We first discuss which businesses have business goals with respect to a particular

system. We then present a canonical set of business goals derived from the business

literature. We describe a formal syntax that can be used to capture business goals.

We discuss how to relate these goals to quality attribute requirements. We present

a variety of different engagement models to elicit business goals and discuss the

positive and negatives of each engagement model. We close with a summary of an

elicitation method we have created and used to elicit business goals and tie them to
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an architecture: the Pedigreed Attribute eLicitation Method (PALM). PALM is

described in fuller detail elsewhere by the authors [3].

11.2 Whose Business Goal is It?

Multiple organizations are involved in the development of a large computer system.

This is the case even if the organizations are different divisions of the same

corporation. Each of those organizations has its own set of goals when it comes

to the system. There is sometimes an assumption that the business goals for a

system are embedded in the requirements for that system. That may not be the case.

For example, when one organization contracts with another to produce a system.

then even if the requirements embody the business goals of the contracting organi-

zation, they will probably not embody the business goals of the development

organization. In fact, how well requirements capture the business goals even for

the contracting organization is an open question.

Some of the organizations that are involved in the development of a computer

system and potential business goals for them are enumerated below. It is possible

that all of these organizations are the same organization but for large computer

systems, this is an unlikely occurrence.

Acquiring organization. The acquiring organization is the organization that pays

for and manages the development. It is responsible for communicating its needs

to the development organization. Its primary concerns should be cost, schedule,

and suitability for the operating and maintenance organizations.

Developing organization. The developing organization is the organization that has

primary responsibility for developing the system. In addition to being responsive

to the acquiring organizations goals, it also has concerns about profit, its

workforce, and developing and utilizing reusable assets.

Sub-contractor to developing organization. From the perspective of a sub-

contractor, the developing organization is the acquiring organization and they

have the same basic types of goals as the developing organization.

Operating organization. The operating organization has goals that reflect how

useful the system being developed will be given their business or mission. They

also have concerns about the cost of operation in terms of its impact on their

workforce’s skill level, numbers, and distribution requirements.

Maintenance organization. The organization responsible for maintaining the

system once it has been delivered is concerned about the quality of the docu-

mentation and the skill level required to maintain the system.

A computer system should, ideally, satisfy the union of all of these goals and, in

theory, if the goals do not conflict, achieving them all is possible. In practice, the

goals from multiple organizations will usually conflict and the development team

must make trade-offs among the goals. Providing guidance to the architect as to
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how to make trade-offs is one important reason the architect needs to be familiar

with the business goals for a system no matter which organization originated them.

11.3 A Canonical Set of Business Goals

We surveyed the business literature to understand the types of business goals that

organizations have with respect to a particular system. The literature is silent on the

business goals for specific projects and so we use the business goals for

organizations as a basis for our work. Our literature survey is summarized in [3,

4] where we discuss the process of developing the list. Some of the most important

citations are [1, 2, 5–9, 11]. The following business goal categories resulted from

applying an affinity grouping to the categories harvested from our survey:

1. Growth and continuity of the organization. How does the system being

developed (or acquired) contribute to the growth and continuity of the organi-

zation? In one experience using these categories, the system being developed

was the sole reason for the existence of the organization. If the system was not

successful, the organization would cease to exist. Other topics that might come

up in this category deal with market share, creation and success of a product

line, and international sales.

2. Meeting financial objectives. This category includes revenue generated or

saved by the system. The system may be for sale, either in stand-alone form or

by providing a service, in which case it generates revenue. A customer might be

hoping to save money with the system, perhaps because its operators will

require less training than before, or the system will make processes more

efficient. Also in this category is the cost of development, deployment, and

operation of the system. But this category can also include financial objectives

of individuals – a manager hoping for a raise, for example, or a shareholder

expecting a dividend.

3. Meeting personal objectives. Individuals have various goals associated with

the construction of a system. Depending on the individual, they may range from

“I want my company to lead the industry” to “I want to enhance my reputation

by the success of this system” to “I want to learn new technologies” to “I want

to gain experience with a different portion of the development process than in

the past.” In any case, it is possible that technical decisions are influenced by

personal objectives.

4. Meeting responsibility to employees. In this category employees are usually

employees involved in development or employees involved in operation.

Responsibility to employees involved in development might include ensuring

that certain types of employees have a role in the development of this system or

it might include providing employees the opportunities to learn new skills.

Responsibility to employees involved in operating the system might include

safety considerations, workload considerations, or skill considerations.
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5. Meeting responsibility to country. Government systems, almost by definition,

are intended to meet responsibility to country. Other topics that might come up

in this category deal with export controls, regulatory conformance, or

supporting government initiatives.

6. Meeting responsibility to society. Some organizations see themselves as in

business to serve society. For these organizations, the system under develop-

ment is helping them meet those responsibilities. But all organizations must

discharge a responsibility to society by obeying relevant laws and regulations.

Other topics that might come up under this category are resource usage, “green

computing,” ethics, safety, open source issues, security, and privacy.

7. Meeting responsibility to shareholders. There is overlap between this cate-

gory and the financial objectives category but additional topics that might come

up here are liability protection and certain types of regulatory conformance

such as adherence to the Sarbanes-Oxley Act.

8. Managing market position. Topics that might come up in this category are the

strategy used to increase or hold market share, staying competitive, various

types of intellectual property protection, or the time to bring a product to

market.

9. Improving business processes. Although this category partially overlaps with

meeting financial objectives, reasons other than cost reduction exist for improv-

ing business processes. It may be that improved business processes enable new

markets, new products, or better customer support.

10. Managing quality and reputation of products. Topics that might come up in

this category include branding, recalls, types of potential users, quality of

existing products, and testing support and strategies. In this category,

“products” can mean an organization’s for-hire services.

There’s obvious overlap among these categories, but we are not proposing a

taxonomy but rather a framework to aid in elicitation of a project’s business goals.

Each category functions as a basis for a semi-structured process to elicit business

goals. Each category is a prompt to begin a conversation: “What kind of business

goals do you have dealing with responsibility to your employees?” for example. In

one exercise we conducted, a manager thought about this particular question for a

minute and then told us about wanting the new product to be successful so the

branch office wouldn’t close, forcing re-location or layoff. That could have come up

(but didn’t) when we asked about market share goals or financial objective goals.

In addition, how business goals change over time as a reflection of the changing

environment must also be considered to determine how much flexibility the archi-

tect must design into the system. The elements of the environment that may change

are legal, social, financial, competitive, and technological [9]. Developing a tech-

nology roadmap is a common activity for a long lived project but other changeable

facets are often neglected. For many organizations, social and regulatory

environments change at least as fast as technologies, and they should be accounted

for. For other organizations, the financial and competitive environments can be
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extremely dynamic. These need to be considered to support the architect in the

design process.

These business goal and change categories aid in business goal elicitation by

prompting a discussion of which categories apply, and then attempting to capture a

concrete instance of a goal or goals in each applicable category. Given a business

goal, now it becomes possible for the architect to investigate how such a goal might

affect quality attribute requirements for the system.

One may view this kind of elicitation as a form of goal-oriented requirements

elicitation as described by Anton [1], with the initial goals pre-specified as a

canonical list of broad business goals categories.

11.4 Business Goals and Architectural Requirements

The relation between business goals and architectural requirements is threefold.

1. Some business goals have nothing to do with the architecture. For example, a

business goal to reduce expenses may be achieved by turning the thermostat

down (or up, depending on season).

2. Some business goals directly impact the architecture and are expressed as

constraints to the architect. For example, an organization may have a business

arrangement with a supplier and the business goal is that “all developments shall

use vendor X software” will dictate architectural choices.

3. Some business goals are manifested as quality attribute requirements. For

example, “Our product will be faster than our competitor’s product” will be

expressed as a performance requirement.

Figure 11.1 shows the relations we have described.

11.5 Relating Business Goals to Quality Attribute

Requirements

Since quality attribute requirements play an important role in designing the archi-

tecture we not only need to elicit business goals but relate those business goals to

quality attribute needs. In essence, we attempt to fill out the following Table 11.1

Business goals

Non-architectural solutions Architecture

Quality attributes

Fig. 11.1 Business goals can

affect architectures directly,

indirectly, or not at all
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Not all cells in the table will be filled out; a particular business goal may

not manifest in requirements for every quality attribute of interest. Moreover,

cells in the table may be filled in vaguely at first, prompting the architect to have

extended discussions about the precise nature of the quality attribute requirements

precipitated by a business goal.

But armed with a table like this, the architect can now make informed designed

trade-offs, especially when combined with information about the value of achieving

each business goal, thus prioritizing the needs.

11.6 A Syntax for Describing Business Goals

Capturing business goals and then expressing them in a standard form will let them

be discussed, analyzed, argued over, rejected, improved, reviewed – in short, all of

the same activities that result from capturing any kind of requirement. One syntax

that could be used to describe business goals is that produced under the guidance of

TOGAF [10]. We use a syntax more focused on the relation between business goal

and architecture, however. Our business goal scenario template has six parts. They

all relate to the system under development, the identity of which is implicit. The

parts are:

1. Goal-subject. This is the stakeholder who owns the goal, who wishes it to be

true. The stakeholder might be an individual, an individual in an identified

organization if more than one organization is in play, or (in the case of a goal

that has no one owner and has been assimilated into an organization) the

organization itself.

2. Goal-object. This is the entity to which the goal applies. A goal-object will

typically be one of: individual, system, portfolio, organization’s employees,

organization’s shareholders, organization, nation, or society.

3. Environment. This is the context for this goal. Osterwalder and Pigneur [9]

identify social, legal, competitive, customer, and technological environments.

Sometimes the political environment is key; this is a kind of social factor.

4. Goal. This is any business goal able articulated by the person being interviewed.

Table 11.1 Business goals and quality attributes

Business goal Availability Modifiability Performance . . .

Business goal 1

Relation between

business goal

1 and

availability

Relation between

business goal

1 and

modifiability

Relation between

business goal

1 and

performance

Relation between

business goal 1

and other quality

attributes

Business goal 2

. . .
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5. Goal-measure. This is a measurement to determine how one would know if the

goal has been achieved. The goal-measure also usually includes a time compo-

nent, stating the time by which the goal should be achieved.

6. Pedigree and value. The pedigree of the goal tells us the person who stated the

goal, the degree of confidence that person has in it, and the goal’s volatility and

value. The value of a goal can be expressed by how much its owner is willing to

spend to achieve it or its relative importance compared to other goals. Relative

importance may be given by a ranking from one (most important) to n (least

important), or by assigning each goal a value on a fixed scale such as 1–10 or

high/medium/low. In this part we can also capture information about the goal

such as related goals, or potential obstacles to meeting the goal.

Note the information added through this syntax (in addition to the business goal

itself). All of this additional information is intended to establish the pedigree of the

goal.

The source of the goal. This enables the architect to have at least one source to

gather additional information about the goals.

The object of the goal. This includes the organization that has the goal. This enables

the architect to understand the relations among the various organizations.

The justification for the goal. This enables the architect to push back on goals that

cause great difficulty in implementation.

The value of the goal. This enables the architect to prioritize the various goals and

make trade-offs among them.

11.7 Engagement Models

The body of knowledge we have presented provides the basis for eliciting architec-

turally relevant business goals from the stakeholders. This elicitation could be

executed in a variety of different engagement models. The engagement model

that we have direct experience with is having a workshop with a variety of

stakeholders; we have reported previously on our results using this engagement

model [3, 4]. In this section, we discuss a variety of different potential engagement

models and then we discuss some considerations that must be balanced when

choosing an engagement model. (All engagement models can include beforehand

inspection and analysis of relevant documentation.)

A face to face workshop. A face to face workshop can involve all of the

stakeholders or just stakeholders from one of the involved organizations. It has

the properties of openness, at least among the attendees, immediacy, and group

dynamics. It has the drawbacks of travel costs and scheduling difficulty. Finding

a time when all of the stakeholders can come together has proven to be a difficult

task, even without consideration of cost.
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Phone interviews. Phone interviews can be one-on-one or group oriented. They can

be mediated by one of the modern collaboration tools or can just be telephone

based. Phone interviews avoid travel cost but, if they are done with a group, have

the same scheduling problems. Group teleconferences have the problem of

keeping attendees attention. Interruptions are much easier with phone interviews

than with face to face interactions.

Questionnaires and forms. Questionnaires and forms to fill out allow the

stakeholders to contribute at their convenience. Constructing questionnaires

and forms that are unambiguous without hands on guidance by the elicitor is

very difficult and time consuming. Questionnaires and forms are also difficult to

follow up to gather additional information.

Hybrid. It is possible to have hybrid engagements, as well. For example, one might

use a form or questionnaire to gather initial information and follow up with a

phone conference at some later date.

Some of the considerations that go into choosing an engagement model for

eliciting business goals are

The cost to stakeholders. Each stakeholder from whom goals are to be elicited must

spend a non-trivial amount of time providing input. This time can be sequential

or broken up. Sequential time is frequently difficult to arrange but reduces the

context switching cost for the stakeholder. Another cost to the stakeholders is

travel time if the elicitation is performed in a remote location.

The cost to those performing the elicitation. If every relevant stakeholder is

interviewed individually, the time for those performing the elicitation is very

high. If relevant stakeholders are interviewed face to face, the travel costs for

those performing the elicitation is also high.

The immediacy of the elicitation. The elicitation can be done synchronously either

face to face or utilizing various communication technologies. It could also be

done asynchronously through questionnaires or forms. Synchronous interactions

enable the elicitor to direct a conversion and use follow up questions to achieve

clarity. Asynchronous interactions allow the stakeholder to provide information

at their convenience.

Openness. The elicitation could be done with all of the stakeholders having access

to the input provided by any of the stakeholders or with the input of stakeholders

being kept confidential. Some stakeholders may not wish to have other

stakeholders aware of their business goals. This argues for confidentiality. The

architect, on the other hand, must justify decisions in terms of business goals and

this argues for openness.

Multiplicity. The elicitation could be done one-on-one or with a group. One-on-one

elicitations provide the maximum opportunity for confidentiality and openness

to the elicitors. Group dynamics often result in participants adding items they

may otherwise not have brought up.
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No one engagement method is best for all situations and, in general, the choice of

engagement method is usually a matter of determining the least problematic

method.

11.8 PALM

We developed the Pedigreed Attribute eLicitation Method (PALM) to put the

principles discussed earlier in this chapter into practice, and to provide architects

with a simple, repeatable, effective method to help them elicit and capture business

goals that apply to a system they are designing. PALM was created and piloted

using the “face-to-face workshop” engagement model discussed earlier, but other

models should be equally effective.

PALM is a seven-step method. The steps are:

1. PALM overview presentation: Overview of PALM, the problem is solves, its

steps, its expected outcomes.

2. Business drivers presentation: Briefing of business drivers by project manage-

ment. What are the goals of the customer organization for this system? What are

the goals of the development organization? This is a lengthy discussion that

gives the opportunity of asking questions about the business goals as presented

by project management.

3. Architecture drivers presentation: Briefing by the architect on the driving

(shaping) business and quality attribute requirements.

4. Business goals elicitation. Using the standard business goal categories to guide

discussion, we capture the set of important business goals for this system.

Business goals are elaborated, and expressed as business goal scenarios. We

consolidate almost-alike business goals to eliminate duplication. Participants

then prioritize the resulting set to identify the most important ones.

5. Identifying potential quality attributes from business goals. For each impor-

tant business goal scenario, participants describe a quality attribute that (if

architected into the system) would help achieve it. If the QA is not already

a requirement, this is recorded as a finding.

6. Assignment of pedigree to existing quality attribute drivers. For each archi-

tectural driver named in Step 3, we identify which business goal(s) it is there to

support. If none, that’s recorded as a finding. Otherwise, we establish its

pedigree by asking for the source of the quantitative part: E.g.: Why is there

a 40 ms performance requirement? Why not 60 ms? Or 80 ms?

7. Exercise conclusion. Review of results, next steps, and participant feedback.

PALM is primarily a tool to empower architects to ask important questions of

salient stakeholders appropriately early in the life cycle. PALM can help architects

in the following ways.

First, PALM can be used to sniff out missing requirements early in the life cycle.

For example, having stakeholders subscribe to the business goal of improving the
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quality and reputation of their products may very well lead to (for example)

security, availability, and performance requirements that otherwise might not

have been considered.

Second, PALM can be used to inform the architect of business goals that directly

affect the architecture without precipitating new requirements. One example is

a system requiring a data base in order to utilize the database team. There is no

standard name for this property (“full-employment-ability?”) nor would it be

expected to show up as a “requirement.” Similarly, if an organization has the

ambition to use the product as the first offering in a new product line, this might

not affect any of the requirements for that product (and therefore not merit

a mention in the project’s requirements specification). But this is a crucial piece

of information that the architect needs to know early so it can be accommodated in

the design.

Third, PALM can be used to discover and carry along additional information

about existing requirements. For example, a business goal might be to produce

a product that out-competes a rival’s market entry. This might precipitate a perfor-

mance requirement for, say, half-second turnaround when the rival features one-

second turnaround. But if the competitor releases a new product with half-second

turnaround, then what does our requirement become? A conventional requirements

document will continue to carry the half-second requirement, but the goal-savvy

architect will know that the real requirement is to beat the competitor, which

may mean even faster performance is needed.

Fourth, PALM can be used to examine particularly difficult quality attribute

requirements to see if they can be relaxed. We know of more than one system where

a quality attribute requirement proved quite expensive to provide, and only after

great effort, money, and time were expended trying to meet it was it revealed

that the requirement had no analytic basis, but was merely someone’s best guess

or fond wish at the time.

Fifth, different stakeholders have different business goals for any individual

system being constructed. The acquirer may want to use the system to support their

mission; the developer may want to use the system to launch a new product line.

PALM provides a forum for these competing goals to be aired and resolved.

PALM can be used to developing organizations as well as acquiring

organizations. Acquirers can use PALM to sort out their own goals for acquiring

a system, which will help them to write a more complete request for proposals

(RFP). Developing organizations can use PALM to make sure their goals are

aligned with the goals of their customers.

We do not see PALM as anointing architects to be the arbiter of requirements,

unilaterally introducing new ones and discarding vexing ones. The purpose of

PALM is to empower the architect to gather necessary information in a systematic

fashion.

Finally, we would hope and expect that PALM (or something like it) would

be adopted by the requirements engineering community, and that within an organi-

zation requirements engineers would be the ones to carry it out.
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11.9 Experience with PALM

We applied PALM to a system being developed by the Air Traffic Management unit

of a major U.S aerospace firm. To preserve confidentiality, we will call this system

The System Under Consideration (TSUC) and summarize the exercise in brief.

TSUC will provide certain on-line services to the airline companies to help

improve the efficiency of their fleet. Thus, there are two classes of stakeholders for

TSUC – the aerospace firm and the airline companies. The stakeholders present

when we used PALM were the chief architect and the project manager for TSUC.

Some of the main goals that were uncovered during this use of PALM were:

How the system was designed to effect the user community and the developer

community

The fact that TSUC was viewed as the first system in a future product line.

Issues regarding the lifetime of TSUC in light of future directions of regulations

affecting air traffic.

The possibility of TSUC being sold to additional markets.

Issues related to the governance strategy for the TSUC product.

The exercise helped the chief architect and the project manager share the same

vision for TSUC, such as its place as the first instance in a product line and the

architectural and look-and-feel issues that flow from that decision.

The ten canonical business goals ended up bringing about discussions that were

wide ranging and, we assert, raised important issues unlikely to have been thought

of otherwise. Even though the goal categories are quite abstract and unfocussed,

they were successful in triggering discussions that were relevant to TSUC. The

result of each of these discussions was the capture of a specific business goal

relevant to TSUC.

11.10 Conclusions

Knowing the business goals for a system is important to enable an architect to make

choices appropriate to the context for the system. Each organization involved in the

construction and operation of the system will have its own set of goals that may

conflict.

We presented a body of knowledge suitable for eliciting the business goals from

stakeholders. The assumption is that the canonical list of goals will act as the

beginning of a conversation that will result in the elicitation of multiple business

goals. Capturing these goals in a fixed syntax ensures that all of the information for

each goal has been recorded and provides a common format for the reader of the

goals.

Based on this body of knowledge there are a variety of different engagement

models that will allow the elicitor to gain the business goal from a stakeholder.
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These engagement models differ in cost to stakeholders, cost of elicitation, open-

ness, and multiplicity.

Finally, we have put the principles and ideas into practice with a worked-out

method called PALM, which we have used to demonstrate the practicality and

usefulness of these ideas.

Future research opportunities exist for continuing to clarify the relation between

business goals and quality attribute requirements; for applying the method under

different engagement models and making the appropriate modifications; and for

measuring the effectiveness of the approach by (for example) trying to measure cost

savings derived from early discovery of missing requirements.
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Chapter 12

Experiences from Industrial Projects

P. Avgeriou, J. Grundy, J. Hall, P. Lago, and I. Mistrı́k

The aim of the book is to develop the bridge between two ‘islands’: Software

Architecture and Requirements Engineering. However, in Software engineering,

there is another gap that needs to be bridged between two different types of

communities: industry and academia. Industrial practitioners work under hard

constraints and often do not have the luxury of trying out research results,

let alone embedding them in their everyday practice. In contrast, academic

researchers face the pressure of ‘publish or perish’ and often struggle with finding

the right industrial context in which to validate their work. Nevertheless, when the

right synergy is established between the two communities, there can be substantial

progress of the state of the art.

In the Software Architecture field, the results of a successful partnership between

industry and academia are manyfold. Examples include the IEEE Recommended

Practice for Architectural Description of Software-Intensive Systems [1] and its

successor, the upcoming ISO-IEC Std. 42010 [2]; they constitute a common

conceptual framework respected in both communities. Methods for architecture

design [3], as well as evaluation [4] have been derived in both environments and

have been successfully applied in practice. The reusability of architecture design

has been boosted with the publication of numerous architecture [5] and design

patterns [6] that were mined in academic and industrial developmental

environments. Finally the most recent advance in the field, the management of

Architecture Knowledge, has sprung out from academic research [7] but has

quickly had an impact in industrial practice.

Similarly, in the Requirements Engineering field, again standards have arrived,

including IEEE 830–1998 [8], which describes both possible and desirable

structures, content and qualities of software requirements. Other academic/industry

requirements tools have become ubiquitous both in software and wider afield,

including use cases [9], requirements elicitation, specification and analysis [10],

and scenario analysis [11].

As well as requirements/architectures, then, this third part of the book bridges

academia/industry at the same time, relating successful collaborations of industrial

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_12, # Springer-Verlag Berlin Heidelberg 2011
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and academic stakeholders with four chapters concerning various aspects of indus-

trial experiences in the field of relating requirements and architecture.

Chapters 13 and 16 relate examples of pragmatic approaches that build on the

experience gained by industrial projects: Chapter 13 derives design solutions to

recurring problems that are packaged as a reference architecture for design reuse;

Chapter 16 documents a number of best practices and rules of thumb in architecting

large and complex systems, thus promoting process reuse.

Chapter 14 presents a detailed academic approach of checking architecture

compliance that has been validated in an industrial system, providing evidence

for the validity of the approach in a real-world case.

Finally Chapter 15 elaborates on a theoretical research result that has come out

of an industrial research environment: an approach to the management of artifact

traceability at the meta-model level, illustrated with realistic examples.

In more detail:

Chapter 13 by Tim Trew, Goetz Botterweck and Bashar Nuseibeh presents an

approach that supports requirements engineers and architects in jointly tackling the

hard challenges of a particular demanding domain: consumer electronics. The

authors have mined architectures from a number of existing systems in this domain

in order to derive a reference architecture. The latter attempts to establish

a common conceptual foundation that is generic and reusable across different

systems and context. It can be used to derive concrete product architectures by

facilitating architects and requirements engineers to successively and concurrently

refine the problem and solution elements and make informed design decisions. The

process of developing a reference architecture by mining from existing systems,

issues encountered and design decisions that resolve them, is simple yet effective

for domains where little architecture standardization exists.

Chapter 14 by Huy Tran, Ta’id Holmes, Uwe Zdun, and Schahram Dustdar

presents a case study in the challenging field of checking compliance of the

architecture (in the SOA domain) to a set of requirements (ICT security issues).

The proposed solution has two main characteristics: it defines multiple views

to capture the varying stakeholder concerns about business processes, and it is

model-driven facilitating the linkage between requirements, architecture, and the

actual implementation through traces between the corresponding meta-models. The

approach results in semi-formal business processes from the perspective of

stakeholders and the checking of compliance of requirements through appropriate

links. It is validated in an industrial case study concerning a SOA-based banking

system.

Chapter 15 by Jochen M. K€uster, Hagen V€olzer, and Olaf Zimmermann

proposes a holistic approach to relate the different software engineering activities

by establishing relations between their artifacts. The approach can be particularly

targeted towards relating artifacts from requirements engineering and architecture,

as exemplified by their case study. The main idea behind the approach is a matrix

that structures artifacts along dimensions that are custom-built for the software

engineering process at hand. The authors propose two default dimensions as

a minimum: stakeholder viewpoints (in the sense of [1]) and realization levels.
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Artifacts are classified into the cells of the matrix according to their nature

and subsequently links are established between them that express traceability,

consistency or actual model transformation between the artifacts. The approach

can be used during method and tool definition across the software engineering

lifecycle by utilizing the generic meta-model in order to decide upon the exact

relationships to be established between the various artifacts.

Chapter 16 by Michael Stal presents a pragmatic architecting process that has

been derived from a number of industrial projects. The process is informally

presented as a set of best practices and rules of thumb, as well as a method comprised

of a series of steps. The process is based on the principle of eliciting, specifying and

prioritizing requirements and subsequently using them as key drivers for

architecting. Besides the rooting in the problem space, the approach combines

some commonly accepted tenets: piecemeal refinement, risk mitigation, reuse,

review, refactoring. The architecture activities are prioritized into four phases

(functionality, distribution and concurrency, runtime and design-time qualities)

and the system is scoped into three levels (system, subsystem, component).
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Chapter 13

A Reference Architecture for Consumer

Electronics Products and its Application

in Requirements Engineering

Tim Trew, Goetz Botterweck, and Bashar Nuseibeh

Abstract Consumer electronics (CE) products must be appealing to customers,

have features that distinguish them in the market and be priced competitively.

However, this must be achieved with limited hardware resources, so requirements

engineers and architects must work together to specify an attractive product within

these constraints. This requires an architectural description from early in develop-

ment. The creation of this description is hampered by the lack of consensus on high-

level architectural concepts for the CE domain and the rate at which novel features

are added to products, so that old descriptions cannot simply be reused. This chapter

describes both the development of a reference architecture that addresses these

problems and the process by which the requirements and architecture are refined

together. The reference architecture is independent of specific functionality and is

designed to be readily adopted. The architecture is informed by information mined

from previous developments and organised to be reusable in different contexts. The

interplay between the roles of requirements engineer and architect, mediated

through the reference architecture, is described and illustrated with an example of

integrating a new feature into a mobile phone.

13.1 Introduction

Consumer electronics (CE) products, such as TVs, smart phones and in-car enter-

tainment, must be appealing to customers, have features that distinguish them in the

market and be priced competitively. Despite falling hardware costs, the resources

available for their implementation, such as processing power, memory capacity and

speed, and dedicated hardware elements, are still limited. These constraints may

restrict the features that can be offered, reduce their capabilities or limit their

concurrent availability. Requirements engineers and architects must work together

to specify an attractive product within these constraints, which requires an archi-

tectural description from the beginning of development.

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
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Given the rate at which novel features are added to product categories such as

mobile phones, requirements engineers cannot only rely on past experience.

Instead, they have to reason from first principles about how a new feature might

be used, how it might interfere with other features, whether implementations

developed for other product categories would be acceptable and how requirements

may have to be adapted for the feature to be integrated into the overall product at

acceptable cost and risk.

This reasoning is hampered by the lack of consensus on high-level architectural

concepts for the CE domain. In contrast, the information processing domain has

widely-recognized industry standards and concepts, such as transactions and the

transparencies supported by distributed processing middleware [1], which are

rarely relevant for embedded software. As an example of the differences, a transac-

tion, a core concept in information processing, is rarely used in the lower levels of

embedded software. This is because any software action that changes the state of

the hardware may be immediately observable by end-users and cannot be rolled-

back unnoticed.

In this chapter, we describe a reference architecture for CE products, which

facilitates the creation of concrete architectures for specific products, and show how

this reference architecture can be used by requirements engineers to ensure that

products are both attractive for consumers and commercially viable. The reference

architecture was developed within Philips Electronics and NXP Semiconductors,

Philips’ former semiconductor division. Philips/NXP developed both software-

intensive CE products and the semiconductor devices that are critical elements of

their hardware. These semiconductor devices are associated with considerable

amounts of software (over one million lines of code for an advanced TV), and are

sold on the open market.

The reference architecture addresses the limited consensus on concepts in this

domain, and avoids the need for architects to become familiar with many abstract

concepts before it can be used. This is by proposing recommended design solutions

for each element in the architectural structure, each followed by a process for

reviewing the design decisions in the light of the specific product requirements.

The content of the reference architecture is based on the experience of many

product developments, and the granularity of its structure is determined by the

architectural choices that must be made. Since architects must map new features

onto the reference structure, they are confronted with architectural choices and their

consequences for the requirements from the outset. We present a process for the

concurrent refinement of requirements and architecture.

In Sect. 13.2, we describe the architectural concerns of requirements engineers,

with examples of requirements and architectural choices that should be refined

together and the types of architectural information required in each case. This

includes the requirements for both complete products and individual COTS

components, which may have to be integrated into a variety of architectures.

Section 13.3 discusses how reference architectures and other forms of architec-

tural knowledge have been used in software development and considers how they

can address a broad application domain, independent of specific functionality.
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Section 13.4 describes the scope of the domain of CE products and identifies

some of the characteristics and requirements of the domain that distinguish it from

others. Section 13.5 describes how, given the limited consensus on high-level

concepts relevant to the architecture of embedded software, appropriate informa-

tion was mined from earlier developments. It then describes how the informa-

tion was organised into our reference architecture. Finally, Sect. 13.6 describes

a process in which the requirements engineer and architect use the reference archi-

tecture to refine the requirements and gives an example of its use in the integration

of a novel feature into a mobile phone.

13.2 Architectural Concerns of Requirements Engineers

Nuseibeh’s “Twin Peaks” model describes both a concurrent process for requirements

engineering and architecting and the relationship between requirements, architecture

and design artefacts [2]. While this provides an overall framework, on its own it is

not concrete enough to provide guidance for the development of CE products. Our

reference architecture aims to pre-integrate elements of design and architecture,

so that, when developing the architecture for a new product, it will both provide

guidance on the decisions that must be made and give insight into the refinement of

the requirements.

As a first step in the development of a reference architecture, we consider

the types of architectural information that are relevant when establishing the

requirements for a CE product. Specifying these products requires a careful balance

between functionality and product cost, while meeting the constraints of perfor-

mance, quality and power consumption. The company that is first to introduce

a new feature, at the price-point acceptable for the mainstream range of a product

category, can achieve substantial sales.

13.2.1 Aligning Requirements and Resources

Balance between functionality and price – Achieving the balance between func-

tionality and selling price requires early insight into alternatives for how a feature

might be implemented, and the hardware consequences for each of the options.

Many CE products have real-time requirements, both firm performance require-

ments for signal processing, (e.g., audio/video processing or software-defined

radio), and soft ones to ensure that the product appears responsive to the user.

If it is only found late in development that these requirements cannot be met,

then features may have to be dropped or downgraded, undermining the value

proposition for the product. As reported by Ran, by the mid-1980s embedded

products had already reached a level of complexity where it was no longer possible

to reason about their performance without architectural models that characterise
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their behaviour [3]. Therefore, there should be an architectural model from the very

outset as the basis for refining requirements and architecture together, to specify

a product that makes the best use of its resources.

Visibility and resolution of resource conflicts – The requirements engineer must

be able to ensure that the resource management policies that resolve conflicts

between features result in a consistent style of user interaction. CE products often

have several features active concurrently, which not only impacts performance, but

can also result in contention for non-sharable resources and thereby feature inter-

action [4]. Although resource management policies might be considered to be

a purely architectural issue, they can affect the behaviour at the user interface.

Therefore, the requirements engineer must be able to understand both the nature of

the resource conflicts, to be able to anticipate that feature interaction could occur,

and the options for their resolution.

An example of this is the muting of TV audio, which is used by several features,

such as the user mute, automatic muting while changing channels or installing TV

channels, and the child lock, in which the screen is blanked and the sound muted

when a programme’s age rating is too high [5]. Since these features can be active

concurrently, feature interaction will result, and it must be possible to articulate

policies across the features. These policies should be directly traceable to the

architecture to ensure that they are correctly implemented.

Consequently, it must be possible to map features in the requirements specifi-

cation onto elements of the software architecture to ascertain which features can

co-exist and for the software architecture to be able to represent the different

resource management policies for resolving resource conflicts.

13.2.2 Architectural Compatibility of Software from External
Suppliers

Major CE companies used to develop all their software in-house in order to have

complete control over its requirements and to be able to fully optimize the imple-

mentation for their hardware architectures. However, this became uneconomic as

the number of product features increased and they now purchase software for non-

differentiating features. While features available on the open market are usually

governed by standards, these standards largely focus on the interface between the

product and its environment and rarely address the APIs between the implementa-

tion of this feature and the remainder of the product.1 For instance, the standards for

1There have been many industry standardization initiatives for particular product categories for

interfaces below the application layer, such as LiMo for mobile phones [6], the MPEGMultimedia

Middleware (M3W) for audio/video platforms [7] and OpenMAX for media processing libraries

[8]. However, to date, none has been widely-adopted in the market. Contributors to this lack of

adoption are the high degree of technical and market innovation in the CE domain and the unstable

structure of the industry, which is in a transition away from vertically-integrated CE companies [9].
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Conditional Access systems for controlling viewing in pay-TV systems specify how

a TV signal is encrypted and the interface to the user’s smart card, but not the

particular functions that should be called to activate decryption in the TV.

Consequently, each supplier develops their own API, with the expectation that it

can be integrated into the architecture of any of their customers’ products, but with

little knowledge of how the architectures may differ between customers. Although

integration problems can arise from many sources, a significant class of problems

result from the dynamic behaviour of the software, particularly since multiple

threads often have to be used to satisfy performance requirements. Different

companies may adopt different policies for aspects such as scheduling, synchroni-

zation, communication, error handling and resource management. Failure of the

supplier and integrator to achieve a mutual understanding of their policies can lead

to complex integration problems. A second source of problems is when the func-

tionality of components from different suppliers overlaps, so that the components

do not readily co-exist. The requirements engineer of the component supplier

should be aware of these potential problems, which will be described in more detail

shortly. Conversely, the requirements engineer of the product integrator should be

aware that such mismatches can occur and that these might be too risky to resolve if

there is a tight deadline for delivery.

The reference architecture should allow the compatibility between a component

and the remainder of the product to be assessed at an early stage. Ruling out a COTS

component on these grounds, despite having an attractive feature list, allows the

requirements engineer to focus on less risky alternatives. This may require

abandoning low-priority requirements that are only supported by that component.

To be able to detect incompatibilities, the options for the behaviour of the software

must be explicit in the reference architecture, while being described independently

of the structure of the software. This independence is required because the lack of

API standardisation results in suppliers using different structural decompositions

for the same functionality. We therefore capture alternative behavioural policies

as architectural texture, which Ran describes as the “recurring microstructure” of

the architecture [3] and which van der Linden characterizes as “the collection of

common development rules for realising the system” [10]. Kruchten’s architectural
mechanisms for persistency and communication [11] are concrete implementations

of behavioural policies. The identification of the alternative policies to include

in our reference architecture and the structuring of its architectural texture are

described in Sect. 13.5.

These issues are described in greater detail in the following paragraphs:

Policies for error handling and resource management – From a requirements

perspective, policies for error handling and resource management can affect the

behaviour observed by the end-user and, hence, must be assessed for their accept-

ability. For example, the vendor of a TV electronic programme guide may have

a policy of displaying their logo when the guide is activated, but the overall product

may support the restart of a specific feature if it fails. This restart would aim to

restore the feature to as close to its previous state as possible, and with minimal
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disturbance to the user. However, this recovery would be compromised if the guide

also displays the logo during this restart.

Degree of control by supplied components – Another source of incompatibility

with supplied components is the scope of their functionality and the degree of

control that they expect to have over the platform. Multi-function CE devices may

integrate best-of-breed functionality from several suppliers. Problems can occur if

the required interfaces of a component are too low, so that the component

encapsulates the control of the hardware resources it requires, or if the provided
interfaces are too high level.

The first case can cause two types of problems: either it is not possible for this

feature to execute concurrently with another that should share the same resource, or

it is not possible to achieve a smooth transition between features that require

exclusive access to the resource. The required interfaces of these components

should always be high enough that it possible to insert a resource management

mechanism below them. However, new features are often originally conceived for

products in which they would always have exclusive access. Then provisioning for

an additional layer might have appeared to be an unnecessary overhead and an

additional source of complexity. It may only be years later, when the product is

extended with functionality from another category, that the problem emerges.

As an example of restrictions on concurrent execution, consider the potential

conflicts between interactive services and video recording in a TV. Both features

must be able to both monitor broadcast data continuously and to select new stations.

Both features must be active continuously and must be able to share the resources.

However, they may not have been designed with that in mind. All terrestrial digital

TVs in the UK have supported interactive services from the outset. However, it was

only a decade later that digital video recording was integrated into TVs. In planning

the extension of the TV to include the recording functionality, it may have been

thought that it is only necessary to add the new feature, whereas it may also have

been necessary to acquire a new interactive TV engine from a different source and

to develop a resource manager. If the TV is scheduled for launch within a tight

window, the additional risk associated in this change may result in the introduction

of the recording feature being deferred.

Even if features are not to be active concurrently, excessively low-level required
interfaces can impair the end-user experience. For instance, as Wi-Fi home

networks became common, stand-alone adapters were developed to allow

consumers to browse for content on their PCs or the Internet and then to decode

the video streams, which could then be fed to a conventional TV. When this

functionality was later integrated within the TV, it was desirable to reuse the

same software components. However, previously these had exclusive control of

the video decoders, but in the new context this control has to be handed over to the

conventional broadcast TV receiver. If the Wi-Fi browser does not have provision

for this, it may be necessary to reinitialize the component whenever the feature is

selected, causing it to lose internal state information and taking an excessive time.

The requirements engineer must be aware of such consequences of reusing a proven
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component in this new context to be able to decide whether the resulting behaviour

will be acceptable for the end-user.

Having provided interfaces at too high a level can compromise the consistency

of the user interface. The supplier of a component of a resource-intensive feature

has to ensure that it can operate reliably with the available hardware resources,

e.g. memory capacity, processing power or interconnect bandwidth, and possibly

with minimal power dissipation. This is most easily achieved with resource

managers that are not only aware of the current global state of the component,

but also of the desired future state of the component so that state transitions can be

planned in ways that avoid transient exhaustion of resources. For instance, in

a product with multi-stream audio/video processing, the semiconductor supplier

may wish to have complete control of the processing of these streams and of the

transitions between different stream configurations. This can be achieved by raising

the level of the provided interface, so that the client only makes a single declarative

request for a new configuration, much in the style of SOA. This enables the supplier

to both provide a component that can be fully-validated, independent of the

behaviour of the customer’s software, and allows the supplier to innovate by

evolving their hardware/software tradeoffs without affecting their customers’

code. These properties of dependability and evolvability are important non-

functional attributes for component supplier, but they can lead to two problems

for the product integrator. Firstly, in this example, the integrator may be reluctant to

reveal the stream configurations that it plans to use and, secondly, the supplier’s

state transition strategy may differ from that used in other features, resulting in

inconsistent overall product behaviour.

An architectural model is required that allows this tension to be discussed

without either party exposing critical intellectual property (IP), possibly providing

the motivation for the parties to enter a closer commercial partnership where

requirements can be discussed more freely. Therefore, the architecture should

represent the responsibilities of the components, while being independent of their

specific functionality.

This section has identified some situations in which requirements and architec-

tural choices should be refined together, both (1) to achieve a satisfactory balance

between functionality and product cost and (2) to ensure that resource management

policies result in a consistent user interface. It has also addressed the selection of

COTS components, both by identifying policies that have some influence on the

behaviour observed by the end-user, and by rapidly screening components for

architectural compatibility, so that unsuitable components can be disregarded at

an early stage. In each case, the types of architectural information required has been

highlighted, including identifying the resources used by any feature and the options

for managing resource conflict, and representing the scope of different COTS

components, in terms of the levels of their provided and required interfaces. This

must be done with a reference architecture which is abstracted from the concrete

product line architecture, both to allow these decisions to be made at an early stage

in development, before a refined architecture is available, and to protect the IP of

the parties.
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Having described the support that a reference architecture should provide the

requirements engineer, the remainder of the chapter describes how such an archi-

tecture was developed for the CE domain and illustrates how it can be used in

practice. As a first step in this, the next section reviews how industry develops and

uses reference architectures in general.

13.3 Reference Architectures in Software Development

Before describing how our reference architecture was developed and how it can be

applied, we will introduce the form and use of reference architectures in some more

mature application domains and what lessons can be learnt for the development of

our architecture.

The role of reference architectures in software development is well-established;

the Rational Unified Process uses them to capture elements of existing architectures,

which have been proven in particular contexts, for reuse in subsequent developments

[11, 12]. Reference architectures can exist at many levels of abstraction and can take

many forms, depending on the context in which they are to be applied. The Open

Group Application Framework (TOGAF) introduces the architecture continuum to

describe the degree of abstraction a reference architecture has from an organisation-

specific architecture [13]. TOGAF describes the characteristics of potential

architectures in this continuum, ranging from Foundation Architectures to Organi-
zation-Specific Architectures and provides a Technical Reference Model (TRM) as

an example Foundation Architecture. The TRM is a taxonomy of applications,

services and service qualities. The service taxonomy is specific to information

processing applications. For our purposes, we require a model that is less specific

to an application domain, since the definition of services changes rapidly as the

functionality supported by a product category evolves. We also require a model that

provides more technical guidance, while being independent of the functionality

being supported.

The OASIS reference architecture for service-oriented architecture (SOA) [14]

is an example of such an architecture, since it captures the information that is

important for a successful SOA, independent of its functionality. In this case, the

overall structure of the SOA relates to the structure of the business, so that there is

a straightforward mapping from the requirements to the structure of the software

architecture. This mapping is more complex in an embedded system, with aspects

of a particular feature being implemented at different layers in the system, e.g. based

on the need to support variability of requirements and hardware and to separate

operations with different temporal granularity [15]. Therefore, in contrast to the

SOA reference architecture, our reference architecture for CE products should

provide guidance on structuring the software.

Eeles and Cripps’ classification of architectural assets [16] uses axes of granu-
larity and level of articulation (or implementation). At a fine grain, they identify

Architectural Styles, Architectural Patterns, Design Patterns and Idioms, which are
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at a suitable level of articulation for our purposes. However, at a coarser grain, their

Reference Model is more domain-specific, being comparable to the TOGAF TRM.

We seek a reference architecture that can aggregate the fine grain architectural

information and provide guidance on its use, while still being independent of the

application domain.

POSA4 [17] presents an extensive pattern language that addresses these aims.

This provided inspiration for some aspects of our reference architecture but it does

not provide sufficient guidance for determining the overall structure of an embed-

ded system for two reasons. Firstly, rather than giving specific guidance, it raises

a set of general questions about the behaviour of an application, the variability that

it must support and its life expectancy and then describes the characteristics of the

architectural styles and patterns, relying on the insights of the architects, who must

be familiar with a wide range of concepts before the language can be applied.

Secondly, developing the structure of embedded software is particularly challeng-

ing because it is usually a hybrid of architectural styles. For example, in the

structure in Fig. 13.5, the software is largely structured as layers, but the operating
system may be orthogonal to these, being accessible by all layers. Moreover,

different architectural styles may be used in different layers, e.g. the media/signal
processing may employ pipes and filters and the user applications may use model-
view-controller.

POSA4 addresses the problem of how to interpret the general questions in the

context of a specific application by preceding its pattern language with an extensive

example of the development of a warehouse management system. This approach of

using a running example is also used by Moore et al. in their B2B e-commerce

reference architecture [18]. Here, the reader can draw parallels between these

examples and their own applications by using the widely-accepted concepts of

the information processing domain. This approach is less effective for embedded

software because of the limited consensus on higher-level concepts.

Considering how better support might be given to architects, Kruchten states that

“architecture encompasses significant decisions” about the software [11], therefore

we might expect that the reference architecture will have made some decisions,

which are applicable throughout its scope, and identify decision topics that have to

be addressed for the current system. In their model of architectural knowledge de

Boer et al. state, “decision making is viewed as proposing and ranking Alternatives,

and selecting the alternative that has the highest rank . . . based on multiple criteria

(i.e. Concerns)” [19]. The reference architecture should provide guidance for

making such decisions.

Reed provides an example of a reference architecture for information pro-

cessing, using an N-tier architecture and identifying the decision topics for each

tier [12]. Here the decision criteria can be described concisely and unambiguously

since they are based on widely-understood concepts and established technology

standards. While this example is a valuable illustration of the role of reference

architectures in supporting the creation of a wide variety of applications, many

more decisions are required to cover the whole information processing domain.
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A more extensive example is Zimmermann et al.’s reusable architectural deci-

sion model for developing a SOA, containing 300 decisions [20]. To guide the

architect through the decisions, the decision model is structured by an extension of

IBM’s 7-layer SOMA model for SOA development [21]. However, for this guid-

ance to be effective, and for the consequences of the decisions to be fully

appreciated, the architects should already be familiar with the concepts in

SOMA, otherwise the initial effort required to adopt it will inhibit the reference

architecture’s deployment. This consensus is lacking in the CE domain, as

highlighted by the problems of enforcing several hundred architectural rules for

a single concrete CE architecture, developed across multiple sites, reported by

Clerc et al. [22]. The adoption of a reference architecture in Zimmermann’s form

would be even more challenging, given the broader scope of the domain and the

lack of an initial structure in which to position the decisions. Therefore, while

architects claim that they do not want to be unduly constrained, and following early

trials with a structure comparable to Zimmermann’s, we concluded that our refer-

ence architecture had to be more prescriptive. Therefore, rather than beginning with

a sequence of decision topics from which the architect would develop their archi-

tecture, it begins by proposing a design, followed by the decision topics, with

alternatives and design rationale, that should be considered where the architects

believe the recommended design to be inappropriate.

Many of the decisions relate to the satisfaction of non-functional requirements

(NFRs), comparable to TOGAF’s service qualities. We have extended Gross and

Yu’s approach to guiding the selection of design patterns, given the product’s NFRs

[23], which is itself based on Chung et al.’s NFR Framework [24].

Muller and Hole report on the views of architects, developing embedded soft-

ware in several industries, on the role of reference architectures and how they can

be developed [25]. They show how reference architectures are informed by feed-

back from the field, in terms of both new stakeholder requirements that would be

satisfied if the architecture could be changed, and the constraints that should be

imposed on new architectures to avoid problems that have occurred in practice.

They note that one of the main objectives for developing a reference architecture

might be to ensure that integration effort is low and, indeed, this was the starting

point for developing our architecture. However, before describing how the archi-

tecture was developed, we will first scope the domain of CE products and identify

the viewpoints that the reference architecture should contain.

13.4 Required Scope and Viewpoints of the Reference

Architecture

When developing the reference architecture, we have to address of the scope of the

CE domain to be covered by the architecture and the identification of appropriate

viewpoints. These can be considered in relation to the business aims that motivated
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the development of the architecture, which go beyond the needs of the requirements

engineer. Indeed, the search for the form and content of the reference architecture

was driven by the desire to avoid integration problems. The overall set of business

aims were as follows:

• To enable requirements engineers to ensure that the product makes the best

use of its resources and to ensure that resource management policies result in

a consistent user interface, as introduced in Sect. 13.2.1. This is particularly

important the first time that a feature is incorporated into a product category.

• To support requirements engineers in the selection of software components from

external suppliers, as introduced in Sect. 13.2.2.

• To support software component suppliers in establishing the requirements for

components to be supplied to CE manufacturers, as introduced in Sect. 13.1.

• To enable architects to exchange best practices across different product

categories, having different concrete architectures. This is particularly to avoid

problems during component integration and to improve maintainability.

• To support internal standardization to facilitate reuse as the requirements of

different product categories converge.

Note that these aims do not include aspects, such as hardware-software co-

design, where specialised analytical models, such as Synchronous Data Flow

[26], specific to the nature of the processing, are used to optimise the system

architecture. While such optimisation is critical to the success of the product, it

normally addresses only a small proportion of the code. The overall software

architecture must ensure that the remainder of the software does not compromise

the performance of these critical elements.

In selecting the application domain to be addressed by the reference architecture,

we have taken the broad domain of CE products, rather than developing separate

reference architectures for each product category, such as TVs and mobile phones.

This is for several reasons. During the requirements phase, we need to be able to

handle the expansion in the scope of functionality supported by a product category,

whether with an entirely novel feature or a feature that was originally developed for

another category. By abstracting from specific functionality we are able to provide

support for feature combinations that had not been anticipated. A broad scope is

also required to exchange best practices and to promote reuse between product

categories. Without a reference architecture, the differences in requirements and

business models can obscure their commonalities. A broader reference architecture

will be exposed to a wider range of design choices, which makes it more effective

when incorporating COTS components, and will be more satisfactory for architects

to use since it cannot be overly prescriptive. Finally, the effort of developing

a broadly scoped architecture can be recouped over more development projects.

The scope of the CE application domain is characterised in two ways:

1. An abstract context diagram for a generic CE product, shown in Fig. 13.1. This

informal diagram is annotated with examples of actors and protocols.

2. A list of the general capabilities of these products, namely:
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• The reception, generation, storage, processing and rendering of audio, video

and graphics.

• Interaction with data services.

• Communication through wired and wireless connections.

• Interaction with peripheral devices.

• Interaction with a user, either supporting the physical user interface or, if only

a co-processor is being developed, its control interface to a host processor.

The following are the general non-functional requirements and constraints of the

products in this domain:

Requirements: The products must meet firm and soft real-time performance

constraints. Their user interfaces must be responsive, even when actions are

inherently time-consuming. Most actions should be interruptible, with the system

transitioning smoothly to respond to the new command. Actions can be triggered by

both user commands and spontaneous changes in a product’s environment. Several

features may be active concurrently. Products are usually members of a product

line, whose members may address different geographic regions or ranges of

features.

Constraints: The products have limited resources, such as application-specific

hardware and processing power and memory. They have limited user interfaces,
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Fig. 13.1 Context diagram for the domain of CE products
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in which feature interaction must be carefully managed, rather than providing

virtualized interfaces using a windowing system. Because any change to the state

of the hardware may be directly observable by end-users, product-level require-

ments may impose constraints on the exact sequence in which the sub-steps of an

action are made. For instance, when changing the channel of a TV, some manu-

facturers favour only displaying the picture when all its parameters are known,

whereas others display it at the earliest opportunity and then adapt its presentation

as its characteristics, such as its aspect ratio, are detected. While the post-conditions

are the same in both cases, the user experience is quite different.

Since our reference architecture is used to create the software architecture

description for a specific product line, its viewpoints are aligned with those of the

existing architecture descriptions. Philips and NXP Semiconductors used Obbink

et al.’s Component-Oriented Platform Architecting (COPA) method [27], which

addresses the development of a product family from the perspectives of business,
architecture, process and organisation (BAPO), as elaborated by van der Linden

et al. [28]. COPA’s architecture perspective has five viewpoints: the purely com-

mercial viewpoints of customer and application, the purely technical viewpoints of
conceptual and realization, and a shared functional viewpoint that represents the
traditional product line requirements specification [29].

To support requirements engineering it might appear to be best to focus on the

commercial viewpoints, which characterize business value of the software and the

context in which it will be used. For instance, the COPA application viewpoint is

comparable to the TOGAF Industry Architecture [13]. However, we see that

apparently similar products, such as TVs sold in the retail market and set-top

boxes supplied to cable TV operators, have quite different business models and

value propositions. Similarly, the business model of a supplier of components into

these markets will be very different from that of a product integrator, which will

usually translate into differences in the technical viewpoints to support a greater

degree of variability. Consequently, the commercial viewpoints are usually specific

to a business unit, which can develop views that are more specific than is appropri-

ate for a reference architecture covering a broad domain.

In NXP Semiconductors, the technical viewpoints are documented according to

a “Software Architecture Design” (SAD) template, described and evaluated by van

Dinther et al. [30]. This template is used in several companies and is an extension of

Kruchten’s “4 + 1” model [31]. The template uses three viewpoints, conceptual,
logical and physical, which approximate to COPA’s functional, conceptual and
realization viewpoints. For clarity, we will use COPA’s terminology in the remain-

der of this chapter. The SAD template informally describes the information that

should be included in each viewpoint, each of which is divided into static and

dynamic parts.
The functional view in an instantiated SAD is application-specific, containing

the requirements and variability model for the concrete product line. In contrast, the

corresponding view in our reference architecture is primarily intended to orientate

new users. It is limited to the illustration of its scope, shown in Fig 13.1, together
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with an elaboration of the capabilities, requirements and constraints listed at the

beginning of this section. The generic elements of the realization viewpoint relate

to the rules for the directory structure and permitted dependencies, together with

coding standards, which are addressed in the company’s reuse standards and will

not be elaborated further.

The primary focus of the reference architecture is COPA’s conceptual view-
point. Here, we require a structural model that is abstracted from concrete

architectures and from particular applications, while still being sufficiently specific

to address issues of resource requirements and component scoping, introduced in

Sect. 13.2. The texture of the reference architecture must identify the decision

topics that must be addressed with regard to behaviour. In practice, the granularity

of the structuralmodel also had to be fine enough to express the alternative policies

in the architectural texture, e.g. to be able to express that alternative policies

allocate responsibilities to different components.

As noted by Muller and Hole, the reference architecture can be informed by

proven concepts and known problems in existing architectures [25]. Given that it

was not known at the outset what information the reference architecture should

contain, nor how it should be structured, this approach was taken to develop insight

incrementally. This was first by mining reusable architectural information from

previous developments and then by structuring this information into a reference

architecture that can be used from the beginning of a new development, as will be

described in the following section.

13.5 Developing a Reference Architecture for the CE Domain

Given that few concepts from information processing can be applied to embedded

software, generally-recognised concepts for embedded software are only found at

the level of state machines and the services offered by real-time operating systems.

These concepts are too low-level for the early stages of architectural development.

Furthermore, the software architectures of concrete embedded products are highly

influenced by the associated hardware architecture and the diversity that this

introduces obscures the commonalities across product categories that could form

a reference architecture to support early decision-making.

The main challenges in the development of our reference architecture were

ascertaining what information should be documented and how it should be

structured. For instance, while the inclusion of a structural model in a reference

architecture is uncontentious, what should it contain? The definition of “architec-

ture” in IEEE 1471 includes “the fundamental organization of a system embodied

in its components, their relationships to each other . . .” [32] but what should be the

semantics of a component in a model abstracted from any specific product?

It was even less certain a priori what decision topics and other information

should be included in the architectural texture. However, Kruchten states that one of
the purposes of the architectural description is to “be able to understand how the

216 T. Trew et al.



www.manaraa.com

system works” and to “be able to work on one piece of the system” [11]. Conse-

quently, one way of identifying the necessary information is through the study of

the root causes of failures that occurred during integration and to record and

abstract those that resulted from insufficient architectural information. Further-

more, architectures should support evolution and a similar approach can be taken

with components that have poor maintainability.

Our reference architecture was therefore developed in two phases. Firstly the

problems encountered during the integration and maintenance of existing products

were studied to obtain guidelines and checklists that could be used to review new

concrete architectures. Secondly, the understanding gained here was used in the

construction of a reference architecture that would support the creation of concrete

architectures, providing support from the earliest phase of the development. The

information flow is illustrated in Fig. 13.2.

13.5.1 Mining Information from Earlier Developments

As noted by Jackson, “the lessons that can be learned from engineering failures are

most effective when they are highly specific” [33]. Therefore, when setting

expectations for what will be achieved from the study of previous projects, we

expect much more than merely reiterating that decisions should be recorded for

each of the aspects identified in COPA, e.g. initialization, termination, fault

handling [27]. However, it is challenging to gain insights on developments

incorporating COTS components, given the limited information that is usually

provided and the reluctance of suppliers to discuss problems in detail. Therefore,

in searching for decision topics to include in the architectural texture, we first

exploited the experience of multi-site development within a single company.

Here, while architectural decisions must be explicit because of the limited commu-

nication between the sites, we were not hampered by IP issues. It was only after
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Fig. 13.2 Information flow in the development of the reference architecture
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developing an understanding of the architectural issues that affect integration that

the study was broadened to include developments incorporating third-party soft-

ware and issues encountered during subsequent maintenance.

We began with a study of 900 failures that occurred during the initial integration

of the sub-systems for a product-line of TVs, developed across multiple sites [34].

These sub-systems contained no legacy code, were developed according to a new

architecture, and had not yet accreted changes as the result of evolution. Further-

more, all versions of code and documents, together with comments in the problem

tracking system, were available. As such, these failures were an ideal candidate for

identifying policies that should have been defined at an architectural level. Many of

these related to component communication and synchronization.

This study did not merely result in a catalogue of the problems encountered and

the design patterns that would have avoided them. Such a catalogue would have

been difficult to reuse by different architects in the context of another development.

Instead, a framework was created that not only identified decision topics for the

observed problems, but also identified new problems and decision topics that could

occur in other contexts. This framework is illustrated in Fig. 13.3.

The key to achieving this generalisation was the identification, for each

architecture-related problem, the property (specific intent) that had been violated

and the general nature of the interaction between the components (interaction
context). Examples of interaction contexts are synchronous function calls and

asynchronously-communicating state machines, which are straightforward for

architects to recognise within any architecture. The generic intents are an abstrac-

tion of the specific intents, formulated in a way that they can be reinterpreted in

different interaction contexts, thereby anticipating new decision topics. Table 13.1

shows examples of intents and their specializations.

For each intent, several alternative policies might be identified that can guaran-

tee its satisfaction. The implementation of each policy is documented in terms of

a design pattern. In some cases, the choice of policy is arbitrary but it must be

consistent throughout the architecture. Inconsistencies may arise when incor-

porating third-party components.

As an example, the problem of notification handlers reading uninitialized

variables, listed in Table 13.1, can arise when a server completes an action on

one thread before the function call that requested that action, made on another

thread, returns to its client. The reference architecture identifies three different

policies that can satisfy this intent. However, these are mutually incompatible,

so a global choice must be made.

More often, the choice of policy will be guided by the NFRs for the product.

Here, Gross and Yu’s approach to selecting design patterns is used to illustrate the

relative merits of the alternatives in relation to the NFRs [23]. We extend their

notation by adding the intents to their softgoal interdependency graphs, together
with the argumentation of how these are satisfied by each of the design patterns.

It may be that different choices will be made at different layers in the architec-

ture. For instance, in addressing the problem of ensuring the correct ordering of

notifications, listed in Table 13.1, there is a trade-off between performance and
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configurability. Rather than making a single decision for the entire product, a policy

that favours performance may be selected for the lower levels of the software and

a policy giving greater configurability may be used at higher levels. The reference

architecture is a vehicle for the requirements engineer to understand how the

efficiency of different parts of the software contributes towards the overall product

performance.

Figure 13.3 shows how, for a concrete product line, the choice of policy would

be recorded in the architecture. In contrast, the reference architecture would

contain a decision topic with the design alternatives.

Having developed this understanding of integration issues and established

a framework for structuring decision topics, several analyses were undertaken of

the integration of software from external suppliers [35]. Since this software had

been developed with no knowledge of the architecture of the products in which

it was to be integrated, these studies revealed a much larger range of policy
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Intent
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Fig. 13.3 Framework for reasoning about policies for communication and synchronisation

Table 13.1 Example intents and their specializations for specific interaction contexts

Interaction contexts Intents

Generic

Variables must be initialized before

they are used

Designs should be insensitive to

the order of completion of

unconstrained activities

Notification handling

Variables that will be read by a

notification handler must be set

before the handler executes.

The notifications of a specific event

should be generated and

delivered in the same order.

Power-up

Avoid cyclic dependencies between

sub-systems during

initialization.

13 A Reference Architecture for Consumer Electronics Products 219



www.manaraa.com

mismatches, e.g. in relation to resource management and error handling. These

mismatches were included as new alternatives in the reference architecture.

Another important class of mismatches related to the scoping of the functionality

supported by components, which caused some of the problems introduced in

Sect. 13.2.2, for which further examples will be given in Sect. 13.6. These

mismatches gave insight into the granularity required of the reference architecture’s

structural model to be able to compare the scopes of components.

Finally, as the product line architectures were subjected to adaptive mainte-

nance, further studies were undertaken of components having low maintainability.

Although the principles of object-oriented design, as articulated by Martin [36],

would have addressed these problems, these are less easy to apply in the C

programming language, which dominates embedded software development.

Furthermore, the flexibility that these principles support is often at the expense of

performance, so guidance is required on their application. Here, it is crucial for

architects and requirements engineers to have a shared roadmap to ensure that

components are structured to support anticipated changes in requirements.

13.5.2 The Organisation of the Reference Architecture

As introduced in Sect. 13.4, the reference architecture is primarily intended to

support the creation of COPA’s conceptual viewpoint for the concrete product line
[27]. Its purpose is to facilitate communication between its stakeholders: the

requirements engineer, the software architect, the project manager and the test

architect. It must support the mapping of requirements onto a structural model so

that the resource usage of each requirement can be ascertained. It must define

concepts, such as different styles of resource management, which facilitate

reasoning about the product.

The principal organisation of the conceptual viewpoint is provided by the

architectural structure and texture, as introduced in Sect. 13.4 and shown in

Fig. 13.4. The architecture is documented as dynamic web pages, which link the

elements in the structure to pages that guide the user through the decision topics

relevant for that element and its interaction with its immediate neighbours. These

decision topics are underpinned by the orthogonal texture axis, which addresses the

topics in greater depth but in a more abstract context, enabling consistent choices to

be made throughout the product.

Additionally, given the variation in the conceptual views of existing

architectures, a new user requires some orientation. This is provided through the

scope of the reference architecture, which is an abstracted form of the COPA

functional viewpoint [27]. It contains the context diagram, already shown in

Fig. 13.1, which includes the mapping of examples of concrete actors and protocols,

used in existing products, to the abstract representations used in the remainder of

the architecture. It also lists the general capabilities of CE products, already

described in Sect. 13.4, together with their typical dynamic behaviour at a product
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level and typical non-functional requirements. This assists the architect in

interpreting the concepts of the framework in the context of their specific product.

The top levels of the architectural structure and texture will now be described in

more detail. This will be followed by a description of how they are linked through

the lower levels of the reference architecture, such as through the recommended

designs and decision topics.

Structure: Normally a structural model shows a partition of the software that can

be traced to concrete system elements [3]. However, as discussed in Sect. 13.3, our

reference architecture is more generic. As shown in Fig. 13.4, the top level of the

structure is the primary entry point to the architectural guidance, so its abstraction

level must be high enough to be broadly applicable, yet concrete enough to be

usable in practice. To achieve this, we have adopted Wirfs-Brock and McKean’s

responsibility-driven design (RDD) [37]. In RDD the role of a class is defined as

“a set of related responsibilities,” which may be abstracted from their specific

functionality. The structural model, illustrated in Fig. 13.5, identifies the roles

that are normally present in a CE product. Following the RDD approach, the

roles are annotated with their purpose and responsibilities. In use, RDD provides

the method for mapping the requirements for a specific product onto the responsi-

bilities that define these roles. This mapping is assisted by annotating many of the

roles with examples from concrete architectures that would be familiar to all

architects in the company.
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The structural model, shown in Fig. 13.5, is sufficiently fine-grained to be able to

compare the scopes of different components and to distinguish between different

sets of decision topics identified in the studies in Sect. 13.5.1. For example,

although the purposes of the three services roles shown in Fig. 13.5 are comparable,

they have different behavioural characteristics and are therefore distinct in the

model.

Considering the problems of scoping, introduced in Sect. 13.2, each role relating to

a particular feature should be allocated to a single concrete component if integra-

tion problems are to be avoided. This allocation is clarified in more detail in the

recommended design linked to the role, an example of which is in Fig. 13.6, where

the collaborations of the roles, the other element required by the RDD method, are

made explicit. These relationships are not present in the top-level structural model

since they can vary, depending on the decisions made. For instance, the invariant
manager in Fig. 13.5 might be implemented as a single state machine or, as

described by van Ommering, by protocol handlers integrated into each component

in the next layer down [38].

Texture: Our model largely follows the classification used in POSA4 [17], but with
the contents adapted from the concerns of distributed systems to those of embedded

software. It contains guidelines on both the structure of the software, e.g. for

interface and component partitioning to support variability and evolution, and on
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the rules or decision topics for behaviour. Some examples of the categories of

behavioural guidelines are:

Synchronization: This category includes the rules or decision topics identified

in the studies of integration failures described in Sect. 13.5.1. Here the rules or

decision topics are classified according to their interaction contexts and are there-

fore reusable throughout the architecture.

State behaviour: This extends the taxonomy of modal behaviour in POSA4 [17] to
cover the much larger set of state-related patterns referenced in the architecture,

providing both consistency in their description and a broader perspective on the

options available to architects.

Resource management: The different classes of resources are an important

concept to help the requirements engineer to understand how architectural choices

affect feature interaction. The category identifies three different classes of resource

management policies, namely synchronized, prioritized and virtual, and the issues

that must be considered with each class. These definitions and arguments are

widely-referenced throughout the architecture.

Having described the top level of the architecture, we will describe how the

structural model is linked to more detailed recommendations and guidance on
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architectural decisions. Each of the roles is hyperlinked to a textual description

of the most relevant NFRs, a recommended design approach and guidance on

selecting design alternatives, as illustrated in Fig. 13.7.

The recommended design approach is expressed in terms of a UML component

model, in which the roles and responsibilities in the top-level structural model are

expressed at a finer grain. Unlike the top-level structural model, component

connectors now indicate the collaborations between components. Figure 13.6

shows an example component model, including a tooltip describing the purpose

and responsibilities of one of the components. More detailed information is

provided through design patterns, documented in a conventional form as part of

the orthogonal architectural texture. The model allows the user to display the

different patterns in which the components collaborate, one of which is shown in

Fig 13.6.

While the individual pattern descriptions are independent of where in the

structure of the architecture they might be applied, Fig. 13.7 shows how the

recommended design is also linked to a description of the concerns addressed by

that design in its particular context. These concerns will include a re-interpretation

of the intents, identified in Sect. 13.5.1, for the current role in the architecture.

This is followed by a diagram illustrating the process for reviewing the decision

topics in the light of the particular product requirements or the characteristics of

Fig. 13.7 Example of steps in the guidance through architectural decisions
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pre-existing components. A UML activity diagram is used, showing the tasks and

resulting work products. Each task in this model is hyperlinked to decision topics,

such as the alternative policies for handling notifications, introduced in Sect. 13.5.1.

Each topic has a detailed discussion of the forces involved and examples of

decisions taken in earlier product developments, obtained from the studies

described in Sect. 13.5.1. Throughout the guidance, hyperlinks are made to defini-

tions and discussions in the architectural texture, where the issues are described in

a more general context. This both allows consistent decisions to be made through-

out the product and reduces the amount of material that must be presented in the

context of each of the individual roles in the architecture.

Finally, the design rationale for each decision topic is presented using our

extension of Gross and Yu’s approach to selecting between design alternatives,

based on their support for different NFRs [23]. As described in Sect. 13.5.1, we add

the intent as a goal that must be satisfied by all design alternatives.

Early trials of the use of the architecture confirmed that the approach of

beginning with a recommended design had a shallower learning curve compared

with that of a pure pattern language, such as that in POSA4 [17], in which there are

no default decisions. Such pattern languages require that the architect has a good

initial grasp of many abstract concepts.

A general principle behind the use of web pages to document the reference

architecture is that a user should be provided with the essence of recommendations

in the first instance, but that it is easy to drill down and get more details when

required. For example, Fig. 13.6 shows both tooltips and dynamic content, used for

the overlay of different design patterns. The latter provides navigation to other

pages through hyperlinks. Indeed, the ability to provide details on demand is the

key to presenting a full design rationale in a compact and comprehensible form.

Having described the development and organisation of our architecture, the

following section describes how it can be used during requirements engineering.

13.6 Usage of the Reference Architecture by Requirements

Engineers

Our reference architecture both allows requirements and architectural decisions to

be assessed together and prompts the requirements engineer to elicit how particular

issues, e.g. resource management, should be handled. In this regard, the architecture

also implicitly includes some of the concerns of Jackson’s Problem Frames [39],

another element of the “Twin Peaks” approach. Figure 13.8 is an informal activity

diagram that illustrates the role of the reference architecture in requirements-related

activities.

The diagram includes three feedback loops from the architecture to the func-

tional requirements specification:
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A. Revise the requirements, having reviewed the architectural decisions that would

be required to satisfy the related NFRs. This might discard requirements with

a high technical risk.
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Fig. 13.8 Role of the reference architecture in requirements-related tasks. Tasks involving

requirements engineers have a solid outline
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B. Identifies cases where contention for resources restricts the concurrent avail-

ability of features. Where features cannot be active concurrently, new

requirements may be added relating to the transition between those features.

C. Where third-party components are to be used, low-priority requirements are

removed if they are only supported by components that are architecturally-

incompatible with the remainder of the product.

The use of the reference architecture will be illustrated by an example of the

integration of the PictBridge protocol into a mobile phone. This will show how

feature interaction can be detected and resource management policies assessed.

PictBridge [40] is a standard that allows a user to select, crop and print

photographs, using a camera connected directly to a printer, without requiring

a PC. The standard only addresses the protocol between the camera and printer,

and not the camera’s user interface or how the feature should be implemented in the

camera.

Consider establishing the requirements the first time that this feature was

integrated into a mobile phone, where it is to be implemented by a COTS compo-

nent that has previously only be integrated in a conventional camera. The

requirements engineer must:

• Determine a complete set of end-user requirements for the PictBridge feature.

• Identify potential feature interaction with the remainder of the phone’s features

and identify how they can be resolved satisfactorily.

These aims are addressed, with reference to Fig. 13.8, with the following

sequence of activities:

• T1: Map the functional requirements of the PictBridge feature onto the roles in
the structural model. The component implementing the protocol is an example

of a procedural service (see Fig. 13.5), which is one that executes a series of

actions, normally running to completion. The PictBridge component will need

access to the hardware drivers for the USB interface and the memory in which

the photographs are stored. In addition, the feature will require a user interface.

• T4: Map the scope of candidate PictBridge COTS components onto the struc-
tural model.

– Survey the COTS components that implement the PictBridge feature.

– The scope of each promising candidate is identified from studying the

features it supports and its interface specification. For instance, are its

provided interfaces restricted to the PictBridge protocol, or does the compo-

nent also provide some user interface functionality?

• T7: Compare the scope of the candidate PictBridge COTS components with
those of other features.Will it be possible to maintain a consistent user interface

across all features? If not then T9: discard incompatible candidate components.
If these components also support some unique functionality that cannot other-

wise be implemented, T10: revise the feasible functional requirements.
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• T2: Identify resource conflicts. Identify the features that could be active concur-

rently and detect feature interaction. Since the user interface of most phones only

permits one application to be selected at a time, we are primarily concerned with

interference from features of the phone that are autonomous applications (see
Fig. 13.5), i.e., features that make calls to the services without having been

explicitly selected through the user interface. For a phone, these are incoming

telephone calls and text messages. How should the product react when a call or

message is received when the PictBridge feature is active?

– What are the consequences for the user interface? PictBridge implementations

on cameras normally retain control of the user interface while the photos are

being printed. Would it be possible to continue printing in the background on a

phone, so that it could continue to be used for other purposes? The architectural

guidance for the user applications and their interface to the services includes a

recommended design for managing the transfer of resources between

applications, shown earlier in Fig. 13.6. Do the available components have

the necessary synchronization functions to implement such design patterns?

– Considering the lower levels of the structural model, can both features be

active concurrently? Does the file system support concurrent access from

multiple applications and are there sufficient memory and processor

resources to support both features?

– Based on this analysis, T5: revise the requirements for concurrently active
features.

• T8: Review the COTS components for mismatched policies. The policies for how
the feature should be activated and terminated should be consistent with those of

other features. Many cameras activate the PictBridge feature only when the

camera is switched on while connected to a printer, whereas a phone user would

not expect to have to switch the phone off and on in the same way. Mismatches

often occur in state behaviour when components developed for one category of

product are integrated into a product of another category. Mismatches may also

occur in the selection of design alternatives, such as those for handling

notifications, introduced in Sect. 13.5.1. Such mismatches can be detected by

architects during the later steps in Fig. 13.7 and may require unacceptably

complex glue code to integrate the component into the remainder of the system.

Again, following this analysis, T9: discard incompatible candidate components
and, if necessary, T10: revise the feasible functional requirements to remove

those only supported by the discarded components.

A benefit of using the reference architecture, even when a concrete archi-

tecture already exists for the mobile phone, is that it supports the comparison

of the scopes of COTS components implementing different features. This makes

it easier to detect feature interaction and identify requirements for resource

management.
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13.7 Conclusions

Establishing the requirements for a CE product has many challenges, such as

identifying user needs or desires for a diffuse market, identifying features that will

differentiate a product from the competition, finding the right price/performance

points and developing a simple and intuitive interaction style.

Much of the requirements specification for a CE product addresses the interac-

tion between features, either because they are active concurrently or because they

can be activated spontaneously by events in the environment. Even if all the

software were to be bespoke, support is required to identify the sources of feature

interaction, which arise both from resources that cannot be shared and from

performance constraints. These problems are compounded when features are

implemented by COTS components, which may initially have been developed for

different product categories, having different overall requirements.

We have developed a reference architecture that covers a broad range of CE

products. The breadth is required so that it can support the addition of novel features

that were not anticipated at the time of the architecture’s creation, to enable the

exchange of best practice between development groups and to promote reuse across

product categories. The abstraction level is set high enough to cover this broad

scope, while still being concrete enough to have clear relevance for product

development. The architecture addresses the lack of consensus on architectural

concepts in the CE product domain by proposing a structure of roles with

recommended designs, while providing guidance on alternative design choices.

This is based on architectural information mined from earlier multi-site and COTS-

based developments.

Architectural texture provides consistency, with design guidelines that can be

used throughout the architecture. This information would also facilitate the creation

of variants of the architecture for other industries with similar technical char-

acteristics, e.g. automotive engine management or medical image acquisition.

Because it provides an initial structure, our reference architecture is of benefit

from the beginning of the requirements phase when identifying resource constraints

or conflicts. For COTS-based developments, the architecture provides a framework

for comparing the scope of functionality of COTS components, both to identify

which features can be active concurrently and to ensure a consistent interaction

style.

Our architecture was developed in the context of a CE manufacturer with a broad

product portfolio. A company with a narrower range of products might be tempted

to move along TOGAF’s architecture continuum, representing more application-

specific information. However, this would give little support for the integration of

novel functionality.

The broad scope of our architecture is also valuable for COTS component

suppliers, for whom it can be difficult to anticipate all the architectures used by

potential customers. The design alternatives used in our reference architecture give

an insight into what might be encountered. The architecture also provides a vehicle
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for detailed discussions with customers without either party exposing their IP,

which will be of increasing value as the CE industry transitions away from

vertically-integrated companies towards supply chains or ecosystems.
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Chapter 14

Using Model-Driven Views and Trace Links

to Relate Requirements and Architecture:

A Case Study

Huy Tran, Ta’id Holmes, Uwe Zdun, and Schahram Dustdar

Abstract Compliance in service-oriented architectures (SOA) means in general

complying with laws and regulations applying to a distributed software system.

Unfortunately, many laws and regulations are hard to formulate. As a result, several

compliance concerns are realized on a per-case basis, leading to ad hoc, hand-

crafted solutions for each specific law, regulation, and standard that a system must

comply with. This, in turn, leads in the long run to problems regarding complexity,

understandability, and maintainability of compliance concerns in a SOA. In this

book chapter, we present a case study in the field of compliance to regulatory

provisions, in which we applied our view-based, model-driven approach for ensur-

ing the compliance with ICT security issues in business processes of a large

European company. The research question of this chapter is to investigate whether

our model-driven, view-based approach is appropriate in the context of the case.

This question is generally relevant, as the case is applicable to many other problem

of requirements that are hard to specify formally (like the compliance requirements)

in other business cases. To this end, we will present lessons learned as well as

metrics for measuring the achieved degree of separation of concerns and reduced

complexity.

14.1 Introduction

As the number of elements involved in an architecture grows, the complexity of

design, development, and maintenance activities also extremely increases along

with the number of the elements’ relationships, interactions, and data exchanges –

and becomes hardly manageable. We have studied this problem in the context of

process-driven, service-oriented architectures (but observed similar problems in

other kinds of architectures as well) [23]. Two important issues are (among other

issues) reasons for this problem: First, the process descriptions comprise various

tangled concerns, such as the control flow, data dependencies, service invocations,

security, compliance, etc. This entanglement seriously reduces many aspects of

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_14, # Springer-Verlag Berlin Heidelberg 2011
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software quality such as the understandability, adaptability, and maintainability.
Second, the differences of language syntaxes and semantics, the difference of

granularity at different abstraction levels, and the lack of explicit links between

process design and implementation languages hinder the reusability, understand-
ability, and traceability of software components or systems being built upon or

relying on such languages.

In our previous work we introduced a novel approach for addressing the afore-

mentioned challenges. Our approach exploits a combination of the concept of

architectural views [11] – a realization of the separation of concerns principle [6]
– and the model-driven development paradigm (MDD) [22] – a realization of the

separation of abstraction levels. This approach has been implemented in the View-

based Modeling Framework – an extensible development framework for process-

driven, service-oriented architectures (SOAs) [23]. In this chapter, we present

a case study in the field of compliance to regulatory provisions in which we applied

our approach for complying to ICT security issues in a business process of a large

European banking company. In particular, the case study illustrates how our

approach helps achieving the following major contributions: first, it captures

different perspectives of a business process model in separated (semi-)formalized

view models in order to adapt to various stakeholders’ expertise; second, it links to
the requirements of the system via a special requirements meta-data view formally

modeling the parts of the requirements information needed in the model-driven

architecture; third, it reduces the complexity of dependency management and

enhances traceability in process development via explicit trace links between

code, design, and requirements artifacts in the model-driven architecture. We also

present lessons learned and preliminary quantitative evaluations on the case study

to support the assessment of our approach regarding some aspects of software

quality such as the understandability, adaptability, and maintainability.

The rest of the chapter is organized as follows. In Sect. 14.2 we introduce

a working application scenario extracted from the business processes of an Euro-

pean banking company. Next, an overview of compliance in service-oriented

architectures is provided in Sect. 14.3. Section 14.4 presents a qualitative analysis

of our approach applied in the application scenario that illustrates how the afore-

mentioned contributions can be achieved. The lessons learned and quantitative

evaluations are provided in Sect. 14.5. We discuss the related work in Sect. 14.6

and conclude.

14.2 Case Study: A Loan Approval Process

Throughout this study, we use a loan approval process of a large European banking

company to illustrate the application of our approach in the domain of process-

driven SOAs. The banking domain must enforce security and must be in conformity

with the regulations in effect. Particular measures like separation of duties, secure

logging of events, non-repudiable action, digital signature, etc., need to be
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considered and applied to fulfil the mandatory security requirements in order to

comply with norms and standards of the banking domain as well as European laws

and regulations. In particular, the company emphasizes the necessity of preventing

the frauds, preserving the integrity of data, insuring a secure communication

between the customers and the process, and protecting customer privacy.

Figure 14.1 depicts the core functionality of the loan approval process by using

BPMN1 – a notational language widely used in industry for designing business

processes.

At the beginning of the process, a credit broker is assigned to handle a new

customer’s loan request. He then performs preliminary inspections to ensure that

the customer has provided valid credit information (e.g., saving or debit account).

Due to the segregation of duties policy of the bank, the inspection carried out by the

credit broker is not enough to provide the level of assurance required by the bank. If

the loan enquired by the customer is less than one million euros, a post-processing

clerk will take over the case. Otherwise, the case is escalated to a supervisor. In this

stage, the customer’s credit worthiness is estimated through a larger set of data

including sums of liabilities, sums of assets, third-party loans, etc. Finally, if no

negative reports have been filed, the loan request is handed over to a manager who

judges the loan risk and officially signs the loan contract. The customer shall

receive either a loan declined notification or a successful loan approval.

14.3 Compliance in Process-Driven SOAs

Services are autonomous, platform-independent entities that can be described,

published, discovered, and loosely coupled by using standard protocols [19].

Service-oriented architecture (SOA) is the main architectural style for service-

oriented computing. In the scope of this chapter, we exemplify our approach for

process-driven SOAs – a particular kind of SOAs utilizing processes to orchestrate

services [10] – because enterprizes increasingly use process-centric information

systems to automate their business processes and services.

Generally speaking, IT compliance means conforming to laws and regulations

applying to an IT system such as the Basel II Accord2, the Financial Security Law

of France3, the Markets in Financial Instruments Directive (MiFID)4, and the

Sarbanes-Oxley Act (SOX)5. These laws and regulations are designed to cover

issues such as auditor independence, corporate governance, and enhanced financial

1http://www.omg.org/spec/BPMN/1.1
2http://www.bis.org/publ/bcbs107.htm
3http://www.senat.fr/leg/pjl02-166.html
4http://www.fsa.gov.uk/pages/About/What/International/mifid
5http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname ¼ 107_cong_bills&docid ¼ f:h3763enr.

tst.pdf
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disclosure. Nevertheless, laws and regulations are just one example of compliance

concerns that might occur in process-driven SOAs. There are many other rules,

policies, and constraints in a SOA that have similar characteristics. Some examples

are service composition and deployment policies, service execution order con-

straints, information exchange policies, security policies, quality of service (QoS)

constraints, and so on.

Compliance concerns stemming from regulations or other compliance sources

can be realized using various controls. A control is any measure designed to assure

a compliance requirement is met. For instance, an intrusion detection system or

a business process implementing separation of duty requirements are all controls

for ensuring systems security. As regulations are not very concrete on how to

realize the controls, the regulations are usually mapped to established norms and
standards describing more concretely how to realize the controls for a regulation.

Controls can be realized in a number of different ways, including manual controls,

reports, or automated controls (see Fig. 14.2). Table 14.1 depicts some relevant

Board of Directors/
Risk Management Department Auditor

Industry 
best practices

Laws/
Regulations

Norms/
standards

Controls

Manual 
Controls

Reports

Automated 
Controls

Specification/Modeling

Business Process
Model Editor

Compliance Metadata
Editors

Code generation

Code 
Generator

Business 
Process Views

Compliance 
Metadata view

Process Engines/
Application Servers

Executable
Processes/Services

View-based, Model-driven Approach

Compliance
Reports

Business
policies

Fig. 14.2 Overview of the view-based, model-driven approach for supporting compliance in

SOAs

Table 14.1 Compliance requirements for the loan approval process

Compliance Risks Control

Order Approval

R1: Sales to fictitious

customers are not

prevented and detected

C2: Customer’s identifications are verified

with respect to identification types and

information, customer’s shipping and

billing addresses are checked against some

pre-defined constraints (countries, post

code, phone number, etc.).

Segregation of

Duties (SoD)

R2: Duties are not properly

segregated (SOX 404)

C3: The status of the account verification must

be checked by a Financial Department

staff. The customer’s invoice must be

checked and signed by a Sales Department

staff.
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compliance requirements that the company must implement in the loan approval

process in order to comply with the applicable laws and regulations.

14.4 View-Based, Model-Driven Approach: Overview

14.4.1 View-Based Modeling Framework

Our view-based, model-driven approach has been proposed for addressing the

complexity and fostering the flexibility, extensibility, adaptability in process-driven

SOA modeling development [23]. A typical business process in a SOA comprises

various tangled concerns such as the control flow, data processing, service

invocations, event handling, human interactions, transactions, to name but a few.

The entanglement of those concerns increases the complexity of process-driven SOA

development and maintenance as the number of involved services and processes

grow. Our approach has exploited the notion of architectural views to describe the

various SOA concerns. Each view model is a (semi)-formalized representation of

a particular SOA or compliance concern. In other words, the view model specifies

entities and their relationships that can appear in the corresponding view.

Figure 14.3 depicts some process-driven SOA concerns formulated using VbMF

view models. All VbMF view models are built upon the fundamental concepts of the

Core model shown in Fig. 14.4. Using the view extension mechanisms described in

[23], the developers can add a new concern by using a New-Concern-View model

that extends the basic concepts of the Core model (see Fig. 14.4) and defines

additional concepts of that concern. The new requirements meta-data view, which

is presented in Sect. 14.4.2, is derived using VbMF extension mechanisms for
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representing parts of the requirements information needed in process-driven SOAs

and links them to the designs described using view models. As a result, the Core

model plays an important role in our approach because it provides the basis for

extending and integrating view models, and establishing and maintaining the

dependencies between view models [23, 27].

There are various stakeholders involved in process development at different

levels of abstraction. For instance, business experts require high-level abstractions

that offer domain or business concepts concerning their distinct knowledge and

expertise while IT experts merely work with low-level, technology-specific

descriptions. The MDD paradigm provides a potential solution to this problem by

separating the platform-independent and platform-specific models [22].

Leveraging this advantage of the MDD paradigm, VbMF has introduced

a model-driven stack that has two basic layers: abstract and technology-specific.

The abstract layer includes the views without the technical details such that the

business experts can understand and manipulate them. Then, the IT experts can

refine or map these abstract concepts into platform-and technology-specific views.

For specific technologies, such as BPEL and WSDL, VbMF provides extension

view models that enrich the abstract counterparts with the specifics of these

technologies [23]. These extension views belong to the technology-specific layer

shown in Fig. 14.3.

Some activities during the course of process development may require informa-

tion of multiple concerns, for instance, communications and collaborations between

different experts, generation the whole process implementation, and so on. VbMF

offered view integration mechanisms for combining separate views to provide

a richer or a more thorough view of a certain process [23]. Finally, VbMF code

generation can be used to produce executable process implementation and deploy-

ment configurations out of these views.

Element

Service Process View**

view

*
requires

1..*
provides

element*

name:String
nsURI:String

NamedElement

CoreModel

process1service*

Fig. 14.4 Core model – the foundation for VbMF extension and integration
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Figure 14.5 shows the loan approval process implemented using VbMF. These

views are inter-related implicitly via the integration points from the Core model

[23]. The detail of these views as well as their aforementioned relationships shall be

clarified in Sect. 14.4.3 on the trace dependencies between VbMF views.

14.4.2 Linking to the Requirements: A Compliance
Meta-data View

In this section, we present a Compliance Meta-data view for linking parts of the

requirements and the design views of a SOA system. On the one hand, this view

enables stakeholders such as business and compliance experts to represent compli-

ance requirements originating from some compliance sources. On the other hand, it

allows to annotate process-driven SOA elements described using VbMF (e.g., the

1 2 3

4 5

Fig. 14.5 The loan approval process development in VbMF: (1) The FlowView, (2–3) The high-

level collaborationView and informationView, and (4–5) The low-level, technology-specific

BpelCollaborationView and BpelInformationView
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ones shown in Fig. 14.5) with the elicited compliance requirements. That is,

we want to implement a compliance control for, e.g., a compliance regulation,

standard, or norm, using a process or service.

The Compliance Meta-data view provides domain-specific architectural knowl-

edge (AK) for the domain of a process-driven SOA for compliance: It describes

which parts of the SOA, i.e., which services and processes, have which roles in the

compliance architecture (i.e., are they compliance controls?) and to which compli-

ance requirements they are linked. This knowledge describes important architec-

tural decisions, e.g., why certain services and processes are assembled in a certain

architectural configuration. In addition, the Compliance Meta-data view offers

other useful aspects to the case study project: From it, we can automatically

generate compliance documentation for off-line use (i.e., PDF documents) and

for online use. Online compliance documentation is, for instance, used in monitor-

ing applications that can explain the architectural configuration and rationale

behind it, when a compliance violation occurs, making it easier for the operator

to inspect and understand the violation.

A compliance requirement may directly relate to a process, a service, a business

concern, or a business entity. Nonetheless compliance requirements not only

introduce new but also depict orthogonal concerns to these: although usually related

to process-driven SOA elements, they are often pervasive throughout the SOA and

express independent concerns. In particular, compliance requirements can be

formulated independently until applied to a SOA. As a consequence, compliance

requirements can be reused, e.g., for different processes or process elements.

Figure 14.6 shows our proposed Compliance Meta-data view model. Annotation

of specific SOA elements with compliance meta-data is done using compliance

Controls that relate to concrete implementations such as a process or service (these

are defined in other VbMF views). A Control often realizes a number of Complian-
ceRequirements that relate to ComplianceDocuments such as a Regulation, Legis-
lation, or InternalPolicy. Such RegulatoryDocuments can be mapped to Standards
that represent another types of ComplianceDocument. When a compliance require-

ment exists, it usually comes with Risks that arise from a violation of it. For

documentation purposes, i.e., off-line uses, and for the implementation of compli-

ance controls the ControlStandardAttributes help to specify general meta-data for

compliance controls, e.g., if the control is automated or manual (isAutoma-
tedManual). Besides these standard attributes, individual ControlAttributes can be

defined for a compliance control within a certain ControlAttributeGroup.
To provide for extensibility, we have realized a generic modeling solution:

a NamedElement from the Core model can implement a Control. This way not

only Services and Processes can realize a compliance control but as the View-based

Modeling Framework is extended also other NamedElements can be specified to

implement a Control. In order to restrict the arbitrary use, an OCL constraint is

attached to the Control that can be adapted if necessary (i.e., the set of the

getTargetClasses operation is extended with a new concept that can implement

a Control).
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Figure 14.7 shows an excerpt of the Compliance Meta-data view of the loan

approval process that illustrates a directive from the European Union on the

protection of individuals with regard to the processing of personal data. The

compliance control C1, which fulfills the requirements CR1, is implemented by

the elements of the loan approval process such as the process named LoanApproval,
the task named CreateLoanFile, and the services named CreditBureau and

CustomerDatabase. Those elements are modeled in VbMF as presented in

*
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impact: EnumRiskCategory
likelihood: EnumRiskCategory
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*

*
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*

*
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Fig. 14.6 The Compliance meta-data view model
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Fig. 14.7 Excerpt of the compliance meta-data view of the loan approval process
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Figures 1.5. The compliance requirement CR1 follows the legislative document and

is associated with an AbuseRisk.
In this way, the views in Figures 1.5 provide the architectural configuration of

the processes and services whilst Fig. 14.7 provides the compliance-related ratio-

nale for the design of this configuration. Using the Compliance Meta-data view, it is

possible to specify compliance statements such as CR1 is a compliance requirement
that follows the EU Directive 95/46/EC on Individual Protection6 and is imple-
mented by the loan approval process within VbMF.

The aforementioned information is useful for the project in terms of compliance

documentation, and hence likely to be maintained and kept up-to-date by the

developers and users of the system, because it can be used for generating the

compliance documentation that is required for auditing purposes. If this documen-

tation is the authoritative source for compliance stakeholders then it is also likely

that they have an interest in keeping this information up to date. In doing so they

may be further supported with, e.g., imports from other data sources. But in this

model also important AK is maintained: In particular the requirements for the

process and the services that implement the control are recorded. That is, this

information can be used to explain the architectural configuration of the process

and the services connected via a secure protocols connector. Hence, in this parti-

cular case this documented AK is likely to be kept consistent with implemented

system and, at the same time, the rationale of the architectural decision to use secure

protocol connectors does not get lost.

14.4.3 Model-Driven Traceability: Linking Architecture, Code,
and Requirements

In the previous section we introduce the View-based Modeling Framework for

modeling and developing processes using various perspectives that can be tailored

for particular interests and expertise of the stakeholders at different levels of

abstraction. We present in this section our view-based, model-driven traceability

approach (VbTrace) realized as an additional dimension to the model-driven stack

of VbMF [27]. VbTrace aims at supporting stakeholders in (semi-)automatically

establishing and maintaining trace dependencies between the requirements, archi-

tecture, and implementations (i.e., process code artifacts) in VbMF [27].

As we mentioned in Sect. 14.4.2, the relationships between the requirements and

elements of a process represented in terms of VbMF views have been gradually

established during the course of process development and stored in a Compliance

Meta-data view. Now we elaborate how our traceability approach helps linking

the various process views and code artifacts. The trace links between low-level,

6http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri¼CELEX:31995L0046:EN:HTML
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technology-specific views and code artifacts can be (semi-)automatically derived

during the VbMF forward engineering process by using extended code generators

or during the VbMF reverse engineering process by using extended view-based

interpreters [27]. The relationships between a view and its elements are intrinsic

while the relationships between different views are established and maintained

according to the name-based matching mechanism for integrating and correlating

views (cf. [23] for more details).

Figure 14.8 presents the traceability view model – a (semi-)formalization of

trace dependencies between development artifacts. The traceability view model

is designed to be rich enough for representing trace relations from process design

to implementation and be extensible for further customizations and specializations.

There are two kinds of TraceLinks representing the dependencies at different

levels of granularity: ArtifactTraces describing the relationships between artifacts

such as view models, BPEL and WSDL files, and so on; ElementTraces describ-
ing the relationships between elements of the same or different artifacts such as

view elements, BPEL elements, WSDL messages, XML Schema elements, and

so forth. The source and target of an ArtifactTrace are ArtifactReferences that

refers to the corresponding artifacts. ElementTraces, which are often sub-links of

an ArtifactTrace, comprises several source and target ElementReferences
pointing to the actual elements inside those artifacts. Each TraceLink might

adhere to some TraceRationales that comprehend the existence, semantics,

causal relations, or additional functionality of the link. The TraceRationale is

open for extension and must be specialized later depending on specific usage

purposes [27].

In order to represent trace dependencies of the various view models at different

levels of granularity, VbTrace has introduced three concrete types of TraceLinks:
ViewToViews describe internal relationships of VbMF, i.e., relationships between
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view models and view elements, ViewToCodes elicit the traceability from VbMF to

process implementations, and finally, CodeToCodes describe the relationships

between the generated schematic code and the associated individual code. Along

with these refined trace links between process development artifacts, we also extend

the ElementTrace concept by fine-grained trace link types between elements such as

ViewElementTrace, ViewCodeTrace, and CodeElementTrace. Last but not least,
formal constraints in OCL have been defined in order to ensure the integrity and

support the verification of the views instantiated from the traceability view

model [27]. In the subsequent sections, we present a number of working scenarios

to demonstrate how VbTrace can help establishing and maintaining trace

dependencies.

14.4.4 Traceability Between VbMF Views

As we mentioned in Sect. 14.4, the stakeholders might either formulate an individ-

ual view or communicate and collaborate with each other via combined views that

provide richer or more thorough perspectives of processes [23]. For instance,

a discussion between a business expert and an IT specialist might require the

orchestration of the loan approval process activities along with the interactions

between the process and other processes or services. The combination of the

FlowView and either the CollaborationView or the BpelCollaborationView based

on the name-based matching approach described in [23, 24] can offer such

a perspective. Figure 14.9 illustrates the trace relationships of such combinations.

The main purpose of view integration is to enhance the flexibility of VbMF in

Fig. 14.9 Illustration of trace links between the flowView (left) and BpelCollaborationView

(right) of the loan approval process
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providing various tailored perspectives of the process representation. Because those

perspectives might be used by the stakeholders for analyzing and manipulating the

process model, we record the relationships raised from the above-mentioned

combinations in the traceability according to specific stakeholders’ actions and

augment them with the Dependency type. For the sake of readability, we only

present a number of selected trace dependencies and use the arrows to highlight the

trace links stored in the traceability view.

The refinements of high-level, abstract views to low-level, technology-specific ones

are also recorded by using trace links of the type ViewToView to support the traceabil-

ity between two viewmodels as well as a number ofViewElementTraces each ofwhich
holds references to the corresponding view elements. Figure 14.10 shows an excerpt of

the traceability view that consists of a number of trace links between the Collabora-

tionView and BpelCollaborationView of the loan approval process.

14.4.5 Traceability Between VbMF Views and Process
Implementations

The relationships between views and process implementation can be achieved in

two different ways. On the one hand, process implementation are generated from

the technology-specific views such as the BpelCollaborationView, BpelInforma-

tionView, etc., [23]. On the other hand, the view-based reverse engineering

approach can also automatically extract process views from existing (legacy)

implementations [26]. We recorded the trace links in both circumstances to main-

tain appropriate relationships between view models and process implementations to

fully accomplish the traceability path from process designs to the implementation

counterparts (see Fig. 14.11).

Fig. 14.10 Illustration of trace links between the high- (left) and low-level CollaborationView

(right) of the loan approval process
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14.4.6 Example Linking Architectural Views, Code,
and Requirements

We present a sample traceability path based on the traceability view established in

the previous sections to illustrate how our traceability approach can support linking

the requirements, architecture, and code (see Fig. 14.12). The traceability path

implies the trace links between the requirements and process elements – derived

from the Compliance Meta-data view – followed by the relationships among VbMF

views. The process implementation is explored at the end of the traceability path by

using the trace dependencies between VbMF technology-specific views and process

code.

Let us assume that there is a compliance requirement changed according to new

regulations. Without our traceability approach, the stakeholders, such as business,

domain, and IT experts, have to dig into the BPEL and WSDL code, identify the

Fig. 14.11 Illustration of trace links between the views (left) and generated BPEL code (right) of
the loan approval process
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Fig. 14.12 Illustration of a traceability path from requirements through architectural views to

code
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elements to be changed and manipulate them. This is time consuming and error-prone

because there is no explicit links between the requirements to and process imple-

mentations. Moreover, the stakeholders have to go across numerous dependencies

between various tangled concerns, some of which might be not relevant to the

stakeholders expertise. Using our approach, the business and domain experts can

better analyze and manipulate business processes by using the VbMF abstract views,

such as the FlowView, CollaborationView, InformationView, ComplianceMeta-data

View, etc. The IT experts, who mostly work on either technology-specific views or

process code, can better analyze and assess coarse-grained or fine-grained effects of

these changes based on the traceability path.

14.5 Evaluation and Lessons Learned

So far we have presented a case study based on the development life cycle of an

industrial business process that qualitatively illustrates the major contributions

achieved by using our approach. To summarize, these are in particular: First,

a business process model is (semi-)formally described from different perspectives

that can be tailored and adapted to particular expertise and interests of the involving

stakeholders. Second, parts of the requirements are explicitly linked to the system

architecture and code by a special (semi-)formalized meta-data view. Third, our

view-based traceability approach can help reducing the complexity of dependency

management and improving traceability in process development. In addition, we

also conducted a quantitative evaluation to support the assessment of our approach.

The degree of separation of concerns and the complexity of business process

models are measured because they are considered as the predictors of many

important software quality attributes such as the understandability, adaptability,

maintainability, and reusability [5]. This evaluation focuses on the view-based

approach as the foundation of our approach and provides evidence supporting our

claims regarding the above-mentioned software quality attributes.

14.5.1 Evaluation

14.5.1.1 Complexity

In practice, there are several efforts aiming at quantifying the complexity of

software such as Line of Code [5], McCabe complexity metrics [18], Chidamber-

Kemerer metrics [3], etc. However, [16] suggested that these metrics are not suitable

for measuring the complexity of MDD artifacts. Lange [16] proposed an approach

for measuring model size based on the four dimensions of [5]. Lange’s metric is of

cognitive complexity that rather reflects the perception and understanding of

a certain model from a modeler’s point of view [5]. That is, the higher the size
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complexity, the harder it is to analyze and understand the system [5]. The complex-

ity used in our study is a variant of Lange’s model size metrics [16], which is

extended to support specific concepts of process-driven SOAs and the MDD para-

digm. It measures the complexity based on the number of the model’s elements and
the relationships between them.

In addition to the loan approval process (LAP) presented in Sect. 14.2, we

perform the evaluation of complexity on four other use cases extracted from

industrial process including a travel agency process (TAP) from the domain of

tourism, an order handling process (OHP) from the domain of online retailing,

a billing renewal process (BRP) and a CRM fulfillment process (CFP) from the

domain of Internet service provisioning. We apply the above-mentioned model-

based size metric for each main VbMF view such as the FlowView (FV), high-level

and low-level CollaborationViews (CV/BCV), and high-level and low-level

InformationViews (IV/BIV). Even though the correlation of views are implicit

performed via the name-based matching mechanism [23], the name-based integra-

tion points between high-level views (IPhigh) and low-level views (IPlow) are

calculated because these indicates the cost of separation of concerns principle

realized in VbMF. Table 14.2 shows the comparison of these metrics of VbMF

views to those of process implementation in BPEL technology, which is widely

used in practice for describing business processes. Note that the concerns of process

implementation are not naturally separated but rather intrinsically scatted and

tangled. We apply the same method to calculate the size metric of the process

implementation based on its elements and relationships with respect to the corres-

ponding concepts of VbMF views.

The results show that the complexity of each of VbMF views is lower than that

of the process implementation. Those results prove that our approach has reduced

the complexity of business process model by the notion of (semi-)formalized views.

We also measure a high-level representation of process by using an integration of

VbMF abstract views and a low-level representation of process by using an

integration of VbMF technology-specific views. The numbers say that the com-

plexity of the high-level (low-level) representation is much less than (comparable

to) that of the process implementation. The overhead of integration points occurs

in both aforementioned integrated representations.

Table 14.2 The complexity of process descriptions and VbMF views

Process

VbMF(Hi) VbMF(Lo) IntegrationPoint Process impl.

FV CV IV BCV BIV IPhigh IPlow BPEL/WSDL

Travel agency (TAP) 33 33 43 56 261 17 40 355

Order handling (OHP) 29 36 44 65 285 17 46 383

Billing renewal (BRP) 81 63 85 132 492 48 177 700

CRM fulfilment (CFP) 49 74 78 131 535 31 88 730

Loan approval (LAP) 68 44 48 104 651 34 85 871
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14.5.1.2 Separation of Concerns

To assess the separation of concerns, we use the Process-driven Concern Diffusion

metric (PCD), which is derived from the metrics for assessing the separation of

concerns in aspect-oriented software development proposed in [21]. The PCD of

a process concern is a metric that counts the number of elements of other concerns

which are either tangled in that concern or directly referenced by elements of that

concern. The higher the PCD metric of a concern, the more difficult it is for the

stakeholders to understand and manipulate the concern. The measurement of PCD

metric in all processes mentioned in Sect. 14.5.1.1 are presented in Table 14.3.

A process description specified using BPEL technology often embodies several

tangled process concerns. VbMF, by contrast, enables the stakeholders to formulate

the process through separate view models. For instance, a process control-flow is

described by a BPEL description that often includes many other concerns such

as service interactions, data processing, transactions, and so on. As a result, the

diffusion of the control-flow concern of the process description is higher than that of

the VbMF FlowView. The results show that the separation of concerns principle

exploited in our view-based, model-driven approach has significantly reduced the

scatter and tanglement of process concerns. We have achieved a significant decre-

ment of the diffusion of the control-flow approximately of 90%, which denotes

a better understandability and maintainability of the core functionality of processes.

For other concerns, our approach is also shown to notably reduce concern diffusions

by roughly 80% for the collaboration concern and about 60% for the information

concern, and therefore, improve the understandability, reusability, and maintain-

ability of business process models.

14.5.2 Lessons Learned

The quickly increasing of the complexity of design, development, and maintenance

activities and maintenance due to the thriving of the number of elements involved

in an architecture is very challenging in the context of process-driven, service-

oriented architectures. We also observed similar problems in other kinds of archi-

tectures that expose the following common issues. First, a system description,

Table 14.3 Measures of process-driven concern diffusion

Process

(%)

Flow Collaboration Information flow

Without

VbMF

With

VbMF

Reduced

(%)

Without

VbMF

With

VbMF

Reduced

(%)

Without

VbMF

With

VbMF

Reduced

(%)

TAP 175 17 90.3 186 40 78.5 85 23 72.9

OHP 212 17 92.0 221 46 79.2 93 29 68.8

BRP 411 48 88.3 409 117 71.4 195 69 64.6

CFP 398 31 92.2 407 88 78.4 176 57 67.6

LAP 425 34 92.0 431 68 84.2 188 69 63.3
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e.g., an architectural specification, a model, etc., embodies various tangled

concerns. As a consequence, the entanglement seriously reduces many aspects of

software quality such as the understandability, adaptability, and maintainability.
Second, the differences of language syntaxes and semantics, the difference of

granularity at different abstraction levels, and the lack of explicit links between

these languages hinder the understandability and traceability of software com-

ponents or systems being built upon or relying on such languages. Last but not least,

parts of the system’s requirements are hard to specify formally, for instance,

the compliance requirements. These intrinsic issues (among other issues) are ones

of reasons which impede the correlating of requirements and the underlying

architectures.

Our study showed that it is feasible to facilitate a view-based, model-driven

approach to overcome the aforementioned challenges. Our approach enables flexi-

ble, extensible (semi-)formalized methods to represent the software system using

separate architectural views. The flexibility and extensibility of our approach have

been confirmed including the devising and using an additional model-driven

requirement view for adding AK meta-data with reasonable effort and a traceability

view for supporting establishing and maintaining dependency relationships

between the architecture and the corresponding implementations. In particular,

this study also provided evidences to confirm that it is possible in the context of

a project to record specific AK that is domain-specifically relevant for a project

using such a view.

Moreover, the model-driven approach complemented by the traceability view

model can help to keep the data in the AK view up-to-date and consistent with the

project. As a result, the integrity and consistency of the links from requirements to

architecture and code can be maintained. To this end, it is reasonable to connect the

data recorded in the AK view with other meta-data that needs to be recorded in the

project anyway. This would be an additional incentive for developers to document

the AK. In our study, compliance in service-oriented systems is illustrated as an

area where this is feasible because a lacking or missing compliance documentation

can lead to severe legal consequences. Nonetheless, our general approach can also

be applied for custom AK without such additional incentives.

There is a limitation in our approach that only specific AK – linked to a domain

specific area like compliance – is recorded and other AK might get lost. It is the

responsibility of a project to make sure that all relevant AK for understanding an

architecture gets recorded. In addition, our view-based, model-driven exploits the

notion of architectural views – a realization of the separation of concern principle –

and the MDD paradigm – a realization of the separation of levels of abstraction.

In particular, the system description is managed and formulated through separate

view models that are integrated and correlated via the name-based matching

mechanism [23].

On the one hand, this supposes additional investments and training are required

at the beginning for instantiating view models, traceability models, and model

transformation rules. In case of legacy process-driven SOAs, the view-based

reverse engineering might partially help stakeholders quickly coming up with
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view models extracted from the existing business process descriptions. However,

manual interventions of stakeholders are still needed to analyze and improved the

extracted views, and sometimes, the corresponding the traceability models. On the

other hand, this also implies that, comparing to a non-view-based or non-model-

driven approach, additional efforts and tool supports are necessitated for managing

the consistency of views and traceability models as those can be manipulated by

different stakeholders as well as enabling change propagation among them. None-

theless, the maintenance of trace dependencies between views can be enhanced by

using hierarchical or ontology-based matching and advanced trace link recovery

techniques [1].

However, the project can benefit in the long term regarding the reducing

maintenance cost due to the enhancement of understandability, adaptability, and

traceability as well as the preserved consistent AK. Nonetheless, it is possible to

introduce our approach into a non-model-driven project (e.g., as a first step into

model-driven development). For doing this, at least a way to identify the existing

architectural elements, such as components and connectors, must be found. But this

would be considerably more work than adding the view to an existing model-driven

project.

14.6 Related Work

In our study, we applied our prior works that is the view-based, model-driven

approach for process-driven SOAs [23–27] in the field of compliance to regulatory

provisions. Therefore, more in-depth comparisons and discussions on the related

work of the view-based, model-driven approach can be found in [23–26] those of

the name-based view integration mechanism can be found in [28], and those of the

view-based traceability approach can be found in [27]. To this end, we merely

discuss the major related works in the area of bridging requirements, architecture,

and code.

A number of efforts provide modeling-level viewpoint models for software

architecture [20], 4+1 view model by [14] and the IEEE 1471 standard [11]

concentrating on various kinds of viewpoints. While some viewpoints in these

works and VbMF overlap, a general difference is, that VbMF operates at a more

detailed abstraction level – from which source code can be generated via MDD.

Previous works on better support for codifying the AK have been done in the area of

architectural decision modeling. Jansen et al. [12] see software architecture as being

composed of a set of design decisions. They introduce a generic meta-model to

capture decisions, including elements such as problems, solutions, and attributes of

the AK. Another generic meta-model that is more detailed has been proposed by

[31]. Tyree and Ackerman [29] proposed a highly detailed, generic template for

architectural decision capturing.

De Boer et al. [2] propose a core model for software architectural knowledge

(AK). This core model is a high-level model of the elements and actions of AK and
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their relationships. In contrast to that, our models operate at a lower-level – from

which code can be generated (the core model in VbMF is mainly defining integra-

tion points for MDD). Of course, the core model by de Boer et al.\ and VbMF could

be integrated by providing the model by de Boer et al.\ as a special AK view in

VbMF that is linked to the lower-level VbMF models via the matching mechanisms

and trace links discussed in this paper.

Question, Options, and Criteria diagrams raise a design question, which points to

the available solution options, and decision criteria are associated with the options

[17]. This way decisions can be modeled as such. Kruchten et al. [13] extend

this research by defining an ontology that describes the information needed for

a decision, the types of decisions to be made, how decisions are being made, and

their dependencies. Falessi et al. [4] present the Decision, Goal, and Alternatives

framework to capture design decisions. Recently, Kruchten et al. [15] extended

these ideas with the notion of an explicit decision view – akin to the basic view-

based concepts in our approach.

Wile [30] introduced a runtime approach that focuses on monitoring running

systems and validating their compliance with the requirements. Gr€unbacher et al.
[7] proposed an approach that facilitates a set of architectural concepts to reconcile

the mismatches between the concepts of requirements and those of the

corresponding architectures. Hall et al. [8] proposed an extension to the problem-

frames approach to support the iteration between problem and solution structures in

which architectural concepts can be considered as parts of the problem domain

rather than the solution domain. Heckel and Engels [9] proposed an approach

to relate functional requirements and software architecture in order to arrive at

a consistent overall model in which a meta model is facilitated to provide separate

packages for the functional requirements and the architectural view and a third

package representing the relation between these views.

In contrast to our work, most of the related work on architectural decision

modeling focus on generic knowledge capturing. Our approach proposes to capture
AK in a domain-specific fashion as needed by a project. Hence in our work some

AK is not as explicit as in the other approaches. For example, the collaborations of

components are shown in the CollaborationView whereas the other approaches

rather use a typical component and connector view. The decision drivers and

consequences of the decisions are reported in the compliance sources and as

risks. That means, our domain-specific AK view adopts the terminology from the

compliance field, and it must be mapped to the AK terminology in order to

understand the overlaps. None of the related works provide detailed guidelines

how to support the AK models or views through MDD. On the contrary, this is

a focus of our work. Additionally, using the model-driven development paradigm in

our approach gains a twofold advantage. On the one hand, stakeholders working

at different abstraction levels are offered tailored perspectives according to their

expertise and interests. On the other hand, data in the AK view are preserved and

keeping up-to-date and consistent with other parts of the project.
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14.7 Conclusion

In this book chapter we presented an approach for relating requirements and

architecture using model-driven views and automatically generated trace links.

We demonstrated the applicability of this approach in the context of a case study

in the field of ICT security compliance. The results suggest that using our approach

it is possible to describe a business process in (semi-)formal way from different

perspectives that can be tailored and adapted to particular expertise and interests of

the involved stakeholders. Our quantitative evaluation gives evidence that this

approach also has benefits in terms of reduced complexity and concern diffusion.

Using a special (semi-)formalized meta-data view, we were able to link parts of the

requirements to the system architecture described by these views and the code

generated from them. In this context, our view-based traceability approach supports

the automated dependency management and hence improves the traceability in

process development. Our ongoing work is to complement this framework with an

integrated development environment that facilitates collaborative model-driven

design with different stakeholders as well as a runtime governance infrastructure

that enacts the detection of compliance violations and compliance enforcement

according to the monitoring directives generated from compliance DSLs and the

Compliance Meta-data view model.
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Chapter 15

Managing Artifacts with a Viewpoint-

Realization Level Matrix

Jochen M. K€uster, Hagen V€olzer, and Olaf Zimmermann

Abstract We propose an approach to artifact management in software engineering

that uses an artifact matrix to structure the artifact space of a project along

stakeholder viewpoints and realization levels. This matrix structure provides

a basis on top of which relationships between artifacts can be defined, such as

consistency constraints, traceability links and model transformations. The manage-

ment of all project artifacts and their relationships supports collaboration across

different roles in the development process as well as change management and agile

practices. Our approach is highly configurable to facilitate adaptation to different

development methods and processes. It provides a basis to develop and/or to integrate

generic tools that can flexibly support such different methods. In particular, it can be

leveraged to improve the transition from requirements analysis to architecture design.

15.1 Introduction

The state of the art in requirements engineering and software architecture has

advanced significantly in recent years. Mature requirements and software engineering

methods such as the Unified Process (UP) [18] specify processes to be followed and

artifacts to be created in application development and integration projects. In

requirements engineering, informal and formal notations as well as modeling

techniques are available to the domain analyst, for example vision statements, strategy

maps, business process models, user stories, and use cases [30]. In software architec-

ture, both lightweight and full-fledged architecture design processes exist. Architec-

tural tactics, patterns, and styles help architects to create designs from previously

gained experience that is captured in reusable assets [2, 6]. Techniques and tools for

architectural decision capturing and sharing have become available [19, 32].

When applying these or other state-of-the-art methods, techniques and tools on

large projects, requirements engineers and architects often produce a large amount

of rather diverse artifacts. If this is the case, it is challenging to maintain the

consistency of these artifacts and to promote their reuse. Likewise, the large body

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_15, # Springer-Verlag Berlin Heidelberg 2011
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of existing work makes it difficult for creators of requirements engineering and

architecture design methods to assemble domain-specific methods that are both

comprehensive and consumable; Service-Oriented Architecture (SOA) design

exemplifies this problem [32]. The same issue makes it hard to build tools that

flexibly support such methods for different domains.

Relationships between artifacts do not only have to be understood both within
requirements analysis and within architecture design; as motivated in previous

chapters of this book, a seamless transition between these analysis and design

activities is particularly important. For instance, the dependency between architec-

turally significant requirements and the architectural decisions that are required to

satisfy these requirements often remains undocumented. This is unfortunate

because the requirements engineer, who is familiar with the application domain,

can advise the architect on domain-specific design issues that arise from common

requirements in the domain. Examples of such requirements are industry-specific

process models and regulatory compliance rules. The architect, on the other hand,

has tacit knowledge that makes him/her pre-select certain patterns, technology

standards and implementation assets. The traceability links to the requirements

that are satisfied by these assets are often not made explicit; therefore it is difficult

to evaluate whether a given design is an adequate solution for a particular business

domain and problem. According to our industry project experience, this gap between

requirements engineering and architecture design delays projects or leads to project

failure; application maintenance may also suffer.

Similar problems can be observed between other roles and viewpoints.

For instance, test cases should be derived from functional and non-functional

requirements; they should also examine design hot spots such as single points

of failure (if high availability is a desired quality attribute) and scalability

bottlenecks (if many concurrent users are likely to perform complex operations

concurrently). Hence, the artifacts created by testers should be aligned with

those used by requirements engineers, architects, and developers. At a minimum,

terminologies should be aligned, traceability links be defined, and continuous

refinement and change of artifacts be supported across these four roles.

The outlined problems in managing requirements engineering, architecture

design, and other software engineering artifacts can be abstracted and generalized:

1. Method definition: When a software engineering method is defined, either by

creating a new method from scratch for a new domain or by instantiating,

tailoring, and combining existing methods, one has to define which artifacts of

which type to include and which of their dependencies to trace. Specifically for

requirements engineering and architecture design, one has to determine what the

deliverables of specific analysis or design activities are and how they relate to

each other (e.g., use cases and class diagrams defined in the Unified Modeling

Language (UML) [28]).

2. Tool design: It should be defined which tools, if any, are used to create and

manage the artifacts defined in a method. These tools should support the flexible

application of a method beyond the provision of simple editors for artifact

notations such as UML. Specifically for requirements engineering and architecture

design, it should be defined how the requirements engineering and the architecture

258 J.M. K€uster et al.



www.manaraa.com

design tools are organized and how they interface with each other. E.g., are the

same tools used by both roles? If so, are different UML profiles used? How can the

required architectural decisions be identified in requirements artifacts?

To address these two general problems, we propose an integrated, model-driven

artifact management approach. This general approach can be leveraged to specifi-

cally improve the transition from requirements engineering to architecture design.

In the center of our approach is the Artifact and Model Transformation (AMT)
Matrix, which provides a structure for organizing and maintaining artifacts and

their dependencies. The default incarnation of our AMT Matrix is based on

stakeholder viewpoints and analysis/design refinement levels, which we call reali-
zation levels, two common denominators of contemporary analysis and design

methods. Relative to the two general artifact management problems, our AMT

approach contributes the following:

1. Method definition: With the AMT matrix, our approach provides a generic

structure to support the definition of methods. It contributes a metamodel that

formalizes the AMTMatrix and its relationship to software engineering artifacts.

2. Tool design: With the AMT matrix, our approach provides a foundational

structure for designing and integrating tools that provide transformations

between different artifacts, create traceability links automatically, validate con-

sistency, and support cross-role and cross-viewpoint collaboration.

Via instantiation and specialization, these two general contributions can be

leveraged to solve our original concrete problem of better aligning and linking

requirements engineering and architecture design artifacts (e.g., user stories, use

cases, logical components, and architectural decisions).

The remainder of the chapter is structured in the following way. In the next

section, we clarify fundamental literature terms such as viewpoint and realization

level and introduce our general concepts on an informal level. After that, we

formalize these concepts in a metamodel. The concepts and their formalization

allow us to define cross-viewpoint transformations and traceability links between

requirements engineering and architecture design artifacts. These solution building

blocks form the core contribution of this chapter. In the remaining sections of the

chapter, we provide an example how our concepts can be applied in practice,

outline the implementation of a tool prototype and discuss related work. We

conclude with summary and a discussion of open issues.

15.2 The Artifact and Model Transformation (AMT) Matrix

Both in requirements engineering and in software architecture design, model-driven

software development is applied in various forms. Maturity levels and practitioner

adoption vary by domain. For instance, software engineering processes such as

Object-Oriented Analysis and Design (OOAD) [4] and modeling languages such as

the Unified Modeling Language (UML) [28] are successfully adopted in embedded

systems engineering and enterprise application development today. Well-crafted
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models facilitate communication between stakeholders; formal models can be

processed by tools in support of automation. A key concept of model-driven

software development is to construct models that describe the system under con-

struction from different viewpoints and at different levels of abstraction; these

models then become the artifacts to be created when following a particular method.

The information found in already existing models serves as input to create model

artifacts. For example, in OOAD and Component-Based Development (CBD),

requirements analysis artifacts such as UML use cases may serve as input to the

construction of architecture design artifacts such as functional component models

expressed as UML class diagrams [8].

To overcome the artifact management problems identified in the previous

section, we structure the model space of a project as an Artifact and Model

Transformation (AMT) matrix. The goal of the AMT matrix is to organize the

model space according to the concepts in the chosen software engineering method.

The default incarnation of our AMT matrix has two dimensions: The horizontal

dimension represents disjoint/discrete stakeholder viewpoints as defined in the

IEEE 42010 specification for architecture descriptions [24]; the vertical dimension

of the matrix represents realization levels as defined in methods promoting an

incremental and iterative refinement of artifacts.

For instance, the architecting process defined by Eeles and Cripps [8] distinguishes

stakeholder-specific, role-based viewpoints such as ‘requirements’, ‘functional’, and

‘deployment’; their two realization levels are the platform-independent ‘logical level’

and the platform-specific ‘physical level’.1 The AMT matrix entry for functional

design on the logical refinement level may then list, for example, UML class

diagrams and sequence diagrams as the artifact types that populate this matrix entry.

Both AMT matrix dimensions can be configured for a particular software

engineering method via the viewpoints and realization levels defined in the method.

An AMT matrix for UP, for instance, differs from an AMT matrix for an agile

process in terms of number, names, and semantics of viewpoints and realization

levels. UP leverages Kruchten’s original 4 þ 1 viewpoint model; these viewpoints

become the columns of the matrix. Elaborating a design via multiple iterations

requires touching already existing artifacts multiple times; by defining one realiza-

tion level row for each iteration, these different stages of the artifact evolution can

be distinguished from each other.

AMT matrix entries can be connected by traceability links and transformations
between artifacts and individual artifact elements (e.g., between steps in a use

case model and operations/methods in a UML class diagram). To enforce its

design practices, the software engineering method determines which links and

transformations are valid. For example, it might not permit to bypass a realization

level or to increase the realization level and switch the viewpoint in a single atomic

transformation.

1Note that Eeles and Cripps [8] use the terms ‘logical’ and ‘physical’ for realization levels whereas

the 4 þ 1 viewpoint model in UP uses them for particular viewpoints.

260 J.M. K€uster et al.



www.manaraa.com

In the following, we introduce our AMT matrix management approach in three

steps:

1. Specify AMT matrix dimensions (i.e., viewpoints and realization levels by

default).

2. Position method-specific artifact types in AMT matrix entries (according to their

purpose).

3. Populate a project-specific AMT matrix instance with artifacts (according to

their type).

Step 1: Specify AMT matrix dimensions.Our first step is preparatory. As outlined
above, we propose to organize all types of models and other artifacts defined in a

method (and, later on, models and other artifacts created on projects) in a multi-

dimensional matrix structure. In this preparatory step, we define how many

dimensions are used, what the semantics of these dimensions are, and how

these dimensions are structured and sourced.

The default incarnation of an AMT matrix has two dimensions. We decided to

combine two problem solving strategies that are promoted by many contemporary

software engineering methods and commonly used in many other engineering

disciplines:

• Partitioning by stakeholder-specific viewpoints [18, 24].
• Incremental refinement via realization levels [8, 15].

The two-dimensional default AMT matrix structure resulting from these

considerations is shown in Fig. 15.1. In the remainder of this chapter, we work

with this default structure; adding dimensions is subject to future research.

Viewpoint

Realization 
Level

(same structure)

(same structure as A0)

Viewpoint A

2

1

0

(same)

(same)

(same structure as A0)

Viewpoint B

(same)

(same)

(same structure)

Viewpoint C

Informal Specification

AMT Matrix Entry

Behavioral Models

Behavioral Model 
Elements

Static Model 
Elements

Static Models

Fig. 15.1 Artifact and Model Transformation (AMT) matrix structure with entry content
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Each entry in the matrix serves one particular, well-defined analysis or design

purpose. In the horizontal dimension, the stakeholder viewpoints differ in terms

of analysis/design concerns addressed as well as notations used and education/

experience required to create artifacts. In the vertical dimension, each level has a

certain depth associated to it such as platform-independent conceptual modeling,

technology platform-specific but not yet vendor-specific modeling, and executable/

installable platform-specific modeling and code. Both informal and formal specifi-

cations may be present in each matrix entry; both static structure and dynamic

behavior of the system under construction are covered.

Our rationale for making discrete viewpoints a default matrix dimension is

the following: Each such viewpoint takes the perspective of a single stakeholder

with a particular concern. This makes the artifacts of a viewpoint, i.e., diagrams and

models, consumable as it hides unnecessary details without sacrificing end-to-end

consistency.2

We decided for realization levels as our second dimension because they allow

elaborating analysis results and design artifacts in an iterative and incremental

fashion without losing the information from early iterations when refining the

artifacts. This is different from versioning a single artifact to keep track of editorial

changes, i.e., its evolution in time (in the absence of dedicated artifact management

concepts such as those presented in this chapter, the current state of the art is

to define naming conventions and use document/file/model versioning to manage

artifacts and organize the model space in a project). The same notation can be

used when switching from one realization level to another, but more details be

added. For instance, a UML class diagram on a logical refinement level might

model conceptual patterns and therefore not specify as many UML classes and

associations as a Java class diagram residing on the physical realization level.

Furthermore, different sets of stereotypes might be used on the two respective

levels although both take a functional design viewpoint.

Realization levels support an iterative and incremental work organization which

helps to manage risk by avoiding common pitfalls such as big design upfront (a.k.a.

analysis paralysis or waterfall) but also the other extreme, ad hoc modeling and

developer anarchy.3 Instances of this concept can be found in many places. For

instance, database design evolves from the conceptual to the logical to the physical

level. Moreover, the Catalysis approach and Fowler in UML Distilled [14] promote

similar approaches for UML modeling (from analysis to specification to implemen-

tation models). To give a third example, an IBM course on architectural thinking

recommends the same three-step refinement for the IT infrastructure (deployment)

2Cross-cutting viewpoints such as security and performance have different characteristics; as they

typically work with multiple artifacts, they are less suited to serve as matrix dimensions. However,

such viewpoints can be represented a slices (projections) through an AMT matrix, e.g., with the

help of keyword tags that are attached to the matrix entries.
3This extreme sometimes can be observed if teams claim to be agile without having digested intent

and nature of agile practices.
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viewpoint dealing with data center locations, hardware nodes, software images,

and network equipment. Finally, the distinction between platform-independent

and platform-specific models in Model-Driven Architecture can be seen as an

instance of the general approach of refinement levels as well. Additional rationale

for selecting viewpoints and realization levels as primary structuring means can be

found in the literature [8, 32].

Step 2: Position method-specific artifact types in AMT matrix entries. Our
second step is performed by method creators and tool engineers. Each method

and each analysis or design tool supporting such method is envisioned to populate

the AMT matrix structure from step 1 with artifact types for combinations of

viewpoints and realization levels. It is not required to fully populate the matrix in

this step; it rather serves as a structuring means. However, gaps should not be

introduced accidentally; they should rather result from conscious engineering

decisions made by the method creator or tool engineer.

To give an example, we now combine agile practices, OOAD, and CBD; our

concepts are designed to work equally well for other methods and notations.

Figure 15.2 shows an exemplary AMT matrix; its viewpoints stem from three

references [8, 18, 31] and the realization levels are taken from two references

[8, 15]. The three AMT matrix entries in the figure belong to the requirements

viewpoint (Req-0, Req-1) and the functional design viewpoint (Fun-1). User

stories, use cases, and component models (specified as a combination of UML

class and sequence diagrams) are the selected artifact types in this example.

Fig. 15.2 AMT matrix entry population examples
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The AMT matrix for a method produced in steps 1 and 2 answers the following

questions:

1. Which viewpoints to use and how many realization levels to foresee (step 1)?

2. Which artifact type(s) to use in each matrix entry, and for what purpose (step 2)?

3. Which notation to select for each artifact and how to customize the selected ones

for a particular matrix entry, e.g., syntax profiling (step 2)?

4. Which role to assign ownership of AMT matrix entries to and when in the

process to create, read, and update the matrix entries (step 2)?

5. Which techniques and best practices heuristics from the literature to recommend

for manual artifact creation and model transformation development (step 2)?

6. Which commercial, open source, in house, or homegrown tools to use for artifact

creation, e.g., editors and transformation frameworks (step 2)?

As these questions can be answered differently depending on modeling preferences

and method tailoring, the AMTmatrix content for a method differentiates practitioner

communities (e.g., a practice in a professional services firm or a special interest group

forming an open source project).

Having completed steps 1 and 2, the AMTmatrix is ready for project use (step 3).

Step 3: Populate a project-specific AMT matrix instance with artifacts. In this

step, the AMT matrix structures the project document repository (model space) and

is populated with actual artifacts (e.g., models and code) throughout the project.

We continue the presentation of step 3 in the second next section of this chapter.

Before that, we formalize the concepts presented so far in a metamodel for artifact

management.

15.3 A Metamodel for the AMT Matrix

In this section, we present a metamodel for the AMT matrix. This metamodel may

serve as a reference for tool development.

15.3.1 Overview

As our approach targets different audiences (i.e., method creators and tool builders,

but also project practitioners), we distinguish between an AMT metamodel, a type-
level AMT model and an instantiated AMT model. The involved models and

diagrams can be summarized as:

1. AMT metamodel, shown in Fig. 15.3.

2. Type-level AMT model, created by a method creator by instantiating the AMT

metamodel. Such a type-level AMT model is created in step 2 of our approach.
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3. Instantiated AMT model, which is created by instantiating and populating a type-

level AMT model when creating project artifacts on a project and categorizing

them according to the AMT matrix approach. Such an instantiated AMT model is

created in step 3 of our approach.

Overall, our organization follows well-established principles that are also used

in the Meta Object Facility (MOF) [27]. We now describe the AMT metamodel

which is used to formalize an AMTMatrix. We outlined in the previous section that

an AMT Matrix consists of several Matrix Entries (expressed by the AMT Matrix

class and the Matrix Entry class in the metamodel). Each Matrix Entry represents

one combination of a viewpoint and a realization level (e.g., Req-0 or Fun-1) and

contains a number of Artifact Types. An Artifact Type can either be a Structural or

a Behavioral Artifact Type, e.g., a UML class diagram vs. a sequence diagram.

Artifact Types consist of Artifact Element Types such as use cases (or use case

steps) and UML classes. Artifact Types together with Artifact Element Types can

be considered as the metamodel defining a language (i.e., requirements engineering

or architecture design notation), i.e., the UML metamodel for UML class diagrams.

UML merely serves as an example here; any other formally defined notation can be

represented this way. As a metamodel for a language typically consists of a

multitude of related model elements, Artifact Element Types are related to each

other by an ‘is related to’ association.

Each Matrix Entry is given a Viewpoint which categorizes it (e.g., Requirements

and Functional Design viewpoints, see Fig. 15.2 in the previous section). Further-

more, each Matrix Entry is associated to a Realization Level which categorizes the

artifacts in the Matrix Entry into realization levels such as the two exemplary ones

presented in the previous section (i.e., informal and logical); as motivated in the

description of step 1 in Sect. 15.2, other amounts of realization levels and different

names can be defined as well (see Sect. 15.5 for examples). An Artifact Type may

appear in multiple matrix Entries (e.g., if the same notation is used to create models

that serve different purposes). Traceability between artifacts and their elements is

supported by the Traceability Link Type which connects Artifact Element Types.

Fig. 15.3 The metamodel for the AMT matrix (represented as a UML class diagram)
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Transformations can be defined as Transformation Types that transform Artifact

Types. Examples are use case to component model transformations and links in

OOAD/CBD.

The metamodel classes and their associations support the configuration of an

AMTMatrix by instantiation, i.e., the creation of a type-level AMTModel. We will

now present several examples of creating AMT model instances.

15.3.2 AMT Matrix Modeling Examples (Applying Step 1
and Step 2)

As a first straightforward example, we configure a matrix that supports the example

of the previous section. This matrix consists of two viewpoints, a requirements and

a functional design viewpoint. There are two realization levels in each viewpoint.

On realization level 0 of the requirements viewpoint, there are four artifact types,

Vision Document, Business Component Heat Map, Epics and User Stories

and Business Activities. Figure 15.4 shows the instantiation of the metamodel to

express such an AMT matrix configuration. In Fig. 15.4, ‘Req’ is an instance of the

class ‘Requirements Viewpoint’, which is a subclass of ‘Viewpoint’ (the subclass is

not shown in Fig. 15.3).

A business component heat map indicates areas of a business that require attention

and investment because of market dynamics and the current positioning of an

enterprise in the market (relative to competition). A component in such a heat map

might be home loan processing (in a banking scenario); a related epic and user story

Fig. 15.4 Example of a type-level AMT model (UML object instance diagram)

266 J.M. K€uster et al.



www.manaraa.com

set might then be ‘modernize and accelerate home loan processing’ and ‘as a retail

bank client, I want to be able to apply for a loan online and be able to receive a quote

immediately so that I can save time and am able to compare competing quotes’.

These artifacts can be related by transformations that generate parts of artifacts

(e.g., an initial set of epics and user stories may be obtained from the heat map).

Transformations may also generate traceability links between artifact elements

(e.g., to record that a user story has been derived from a heat map).

In addition to theAMTmetamodel itself, constraints can be formulated on different

levels. Such constraints can pose requirements on a type-level AMT model and also

on instantiated AMT models, such as that each configured viewpoint must be

represented. Constraints can also be formulated to require a certain relationship in a

populated AMT Matrix instance, e.g., that certain traceability links between model

elements have to exist. It is also possible to formulate constraintswithout tying them to

a specific AMTMatrix. Such a constraint can state a requirement for an AMT matrix

and could require a certain number of artifact types or transformation types to exist.

As a second example, we continue the OOAD/CBD example from step 2 in

Sect. 15.2 and discuss an AMT matrix configuration where software architects are

advised to analyze the use cases to create an initial component model for the

solution under construction. We now perform this design activity in an example

and derive an AMT Matrix along the way. We decided to apply the component

modeling heuristics for this design step from the literature, specifically ‘UML

Components’ by Cheesman/Daniels [7]. This book defines a mature, state-of-the-art

OOAD method that is widely adopted in practice by a large population of require-

ments engineers and architects. Alternatively, other techniques or heuristics could be

applied in this activity as well.4 With the help of our metamodel, these heuristics can

be expressed as model transformations.

In their method, Cheesman/Daniels defined a ‘specification workflow’ which

begins with a step called ‘component identification’. Business concepts and use

case model are among the input to this step (besides existing interfaces and existing

assets). Among other artifacts, it yields ‘component specs & architecture’, captured

in a component model artifact [8]. In our exemplary AMT matrix (Fig. 15.2), use

case models reside in entry Req-1 and component models in entry Fun-1. Under

‘Identifying Interfaces’, Cheesman/Daniels advise to call out user interface, user

dialog, system services, and business services components and trace them back to

requirements artifacts. These components offer one operation per use case step.

As the next step, they recommend adding a UML interface to the design for

each use case step; for each use case, a dialog type component should be added to

the architecture. This scheme can be followed by an architect/UML modeler, or

partially automated in a tool targeting the analysis-design interface (or, more

specifically, the Req-1 to Fun-1 matrix entry boundary in an AMT matrix).

4For instance, domain- and style-specific literature, e.g., on service modeling and SOA design can

further assist with this work (see Schloss Dagstuhl Seminar on Software Service Engineering

(January 2009) and [29] for examples).
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Table 15.1 maps the AMT metamodel classes from Fig. 15.3 to the artifact types

in the OOAD/CBD example from Fig. 15.2 (Sect. 15.2). It also lists an exemplary

model transformation implementing the Cheesman/Daniels heuristics for the tran-

sition from use cases to components. A full version of this table would provide the

complete output of step 2 of our approach for OOAD/CBD.

15.3.3 Additional Metamodel Instantiation Examples
and Considerations

An example of a constraint crossing viewpoints is that no logical functional design

component in Fun-1 should exist that does not have any traceability link (existence

justification) in a requirement, e.g., a use case (on a lower level of refinement, there

might be merely technical utility components that only have indirect links to the

business requirements). A second example of a constraint is the rule of thumb that

no Req-0 user story (see Sect. 15.2) and no Req-1 use case should reference any

business entities that have not been defined in a Req-0 glossary or Req-1 OOAD

domain analysis model.

Business interfaces (i.e., business type model and business rules) often serve as

input to component interface specification work (i.e., providing method signatures).

These artifact types can be positioned in our AMT matrix in a similar way as use

cases and components; additional traceability link types and transformation types

can be defined.

Table 15.1 Artifact and Model Transformation (AMT) matrix for OOAD/CBD (developed in

step 2 of our approach)

Matrix entry Requirements

engineering, level 1

(Req-1)

Functional solution design, level 1

(Fun-1)

Metamodel concept Role: domain analyst Role: software architect

Artifact type (structural) Use case model Component model (UML class diagram)

Artifact type

(behavioral)

Use case scenarios Component interaction diagrams (UML

sequence diagrams) for sunny day and error

scenarios

Artifact element type Use case Components as defined in reference architecture

Use case step Component responsibilities expressed as initial

operations in initial system interface

Precondition Assertion in component specification

Postcondition Out value of operation plus optional assertion

Traceability link type From component back to use case

From operation back to use case step

Transformation type From use cases to functional components (realization level 1):

user interface, user dialog, system services, business services
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15.4 Example: Instantiation of Artifact Management

for an OOAD Project

Once a type-level AMT model has been created (e.g., the OOAD/CBD one from

Sects. 15.2 and 15.3), one instance of the type-level AMT model is created per

project that employs the method described by the AMTmatrix (here: OOAD/CBD).

This instantiated AMT model is populated by the project team.

AMT matrix instance for Travel Booking System (applying step 3). In the Travel
Booking System example in [7], a ‘Make a Reservation’ use case (for a hotel

room as part of a travel itinerary) appears. The use case has the steps ‘Identify

room requirements’, ‘System provides price’, and ‘Request a reservation’ (among

others). The component identification advice given in the book is to create one

dialog type component called ‘Make Reservation’ (derived from use case) and one

system interface component providing initial operations such as ‘getHotelDetails()’,

‘getRoomInfo()’, and ‘makeReservation()’ (derived from the use case steps).

Use case model and component model for the Travel Booking System are examples

of artifacts; the four use cases, the use case steps, and the two components are

examples of artifact elements that are linked with traceability links. The transition

from the use case to the initial component model can be implemented as a model

transformation. Figure 15.5 summarizes these examples of model artifacts, artifact

elements, traceability links, and transformations.

All component design activities discussed so far take place on a conceptual,

platform-independent realization level; in the Cheesman/Daniels method, compo-

nent realization (covered in a separate Chapter called ‘Provisioning and Assembly’)

Fig. 15.5 A part of an exemplary AMT matrix instance population
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represents the transition from realization level 1 to realization level 2 (or from logical

to physical design). All design advice in the book pertains to the functional view-

point; the operational/deployment viewpoint is not covered. Advice how to place

deployment units that implement the specified and realized functional components,

e.g., in a Java Enterprise Edition (JEE) technology infrastructure from an application

server middleware vendor, is available elsewhere in the literature.

Observations in exemplary application of AMT concepts (discussion). The

examples in this section demonstrate that our artifact management ideas are in

line with those in established methods and recognized text books; our concepts add

value to these assets as they organize the artifacts produced and consumed in a

structured, interlinked fashion. They also provide a formal underpinning for such

assets that tool builders can use to create method-aware tools of higher value than

current Create, Read, Update, Delete (CRUD) editors on metamodel instances.

As a side effect, our examples also indicate that it often makes sense (or even

is required) to combine methods, techniques on application development and

integration projects. An integrated approach to artifact management facilitates such

best-of-breed approach to method engineering.

15.5 AMT Matrix Prototype and Usage Considerations

Prototypical implementation. We have realized AMT matrix support in the Zurich
Artifact Compiler (ZAC). ZAC is implemented in Java and Eclipse; its first version

has the objective to demonstrate the value and the technical feasibility of our

concepts. The current ZAC demonstrator provides Business Process Modeling

Notation (BPMN) and UML frontends as well as UML, architectural decisions,

and project management tool backends. It is configured with the realization levels

and viewpoints from [8] that already served as examples in the previous sections.

The demonstrator supports the following transformations:

• User story to UML use case (Req-0 to Req-1).

• Activity in a process specified in BPMN to UML use case (Req-0 to Req-1, or

Req-1 to Req-15).

• UML use case to UML component (Req-1 to Fun-1).

• UML component to architectural decision issues and outcomes (Req-1 to Rat-1).

• User stories to work items in high-level project plan (Req-0 to Mgmt-0), where

‘Mgmt’ stands for ‘Project Management Viewpoint’.

The frontends are implemented as plain Java objects; they process XML files

that contain the input models. Backends use Eclipse JET as a template-based

transformation framework. The AMT matrix comprises a set of interrelated plain

Java objects; the ASTs are realized as graphs, the symbol tables as hash tables.

5Depending on the positioning of BPMN in the method used to create and configure the type-level

AMT model
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Figure 15.6 shows an instance of an AMT matrix for OOAD/CBD (i.e. an

instantiated AMT model) as it would be developed on a project. The case study

from the previous section serves as example here. This instance was developed with

the ZAC prototype; it extends the examples given in previous sections of the

chapter. The five viewpoints, three realization levels, and various model artifact

types (e.g., component relationship diagram) originate from the IBM Unified
Method Framework (UMF). UMF is the standard method used by all IBM

architects on professional services engagements with clients; under predecessor

names, it has been applied on numerous commercial enterprise application devel-

opment and integration projects since 1998. UMF leverages the UP metamodel, but

adds a rich set of method content.

In the prototype, an agile user story elicitation effort (Req-0) yields candidate

use cases (Req-1), and candidate components (Fun-1); examples of such artifacts

appeared in the previous section of this chapter. A work breakdown structure can be

derived from these inputs (Mgmt-0); its work items concern the design and devel-

opment of the candidate components. The transitions between entries (i.e., realiza-

tion levels or viewpoints) are accompanied by related architectural decisions that

preserve the justifications of the chosen designs, e.g., pattern selection and adoption

decisions regarding the conceptual component model (Rat-1). The solid arrows

in the figure either represent human design activities or model transformations.6

The dotted arrows represent traceability links. For instance, we have suggested

Fig. 15.6 Exemplary AMT matrix configuration (subset of entries)

6Such transformations are algorithms/functions that accept one or more models as input and return

the same or another set of models as output
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a pattern-centric decision identification technique connecting Fun-1 and Rat-1 in

our previous work [32].

Usage scenarios and roles. Software engineering methods can be characterized

by their artifacts, their process (i.e., roles, phases/tasks/activities), the techniques

for artefact creation they provide, and their reusable content. Hence, we expect

method creators to configure AMT matrices according to particular methods such

as UP, domain analysts (requirements engineers) to populate the AMT entries for

the requirements viewpoint, software architects to own the entries in the functional

and operational design viewpoints (i.e., Fun-1, Fun-2, Op-1, Op-2), and platform

specialists to populate the design AMT matrix entries on the physical realization

level (e.g., developers for Fun-3). These roles may perform the following activities:

1. Populate existing AMT matrices supporting an out-of-the-box configuration

(this is a mere application scenario, corresponding to our step 3 from Sect. 15.2).

2. Develop custom transformations, e.g., in support of software provisioning; in such

transformations, models in the operational viewpoint can be leveraged, e.g., when

transitioning from a deployment pattern to a concrete software-as-a-service offer-

ing (step 2).

3. Configure AMT matrices with other viewpoint models and/or additional realiza-

tion levels (step 1).

4. Develop additional applications and utilities leveraging the data in an AMT

matrix, e.g., effort estimation applications and artifact search utilities (step 2 and

step 3).

5. Instantiate the AMT metamodel to support new methods, artifact management

tools, or model transformation frameworks (step 1 and step 2).

Another usage scenario for the matrix is to compare methods and position

reusable assets; an agile project uses many realization levels, attempts to produce

very few artifacts for each entry, and traverses the matrix several times per day

(a formalization of continuous integration); a waterfall project has only one reali-

zation level (matrix row) and traverses this row once per project.

Discussion. In the current state of the practice, we find tools that produce

a number of artifacts without providing an integrated view of all knowledge

about the system under construction. This knowledge is contained in the various

created artifacts. Moreover, some tools overlap in their functionality and expose

their users to semantic dissonances and tedious, error-prone import-export or copy-

paste activities as it is not clear to which viewpoint and realization level the tool

output belongs. Naming conventions and package hierarchies are used to organize

artifacts.

These problems can be overcome if configurable AMT matrix support is

introduced to existing and emerging requirements engineering and architecture

design (modeling) tools to integrate them into an Integrated Modeling Environment
(IME) that ties in with state-of-the-art development environments such as Eclipse-

based Integrated Development Environment (IDEs). Details of such integration

effort are out of scope of this chapter (and this book).
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Applying our presented approach requires some effort frommethod engineers and

project teams. For instance, matrix dimensions, viewpoints, and realization levels

have to be defined and artifact types and artifacts have to be assigned to matrix

entries. However, much of this effort is spent anyway, even without our approach

being available (if this is not the case, project teams run the risk of creating unneces-

sary artifacts). Furthermore, well-established engineering practices such as separating

platform- independent from platform-specific concerns and distinguishing stake-

holder-specific concerns are easily violated if established concepts such as viewpoints

and realization levels are not applied. Our AMTmatrix approach supports these well-

established concepts natively and combines them to their mutual benefit. What is

minimally required from the method engineer and the project team is to reflect and

clearly articulate the purpose of each artifact type/artifact in terms of its viewpoint

and realization levels. We believe that the necessary effort of following our approach

is justified by its various benefits: (1) it enables checking the completeness of artifact

types/artifacts across all required stakeholder concerns across the software engineer-

ing lifecycle, (2) it enables checking the absence of redundancy across artifact types/

artifacts and (3) it allows method engineers and project teams to specify and reason

about traceability and consistency of artifacts/artifact types in a more conscious and

disciplined way.

Furthermore, we believe that the required effort can be minimized through good

tool design. For instance, a tool that supports role-specific configuration of its user

interface and is aware of method definitions, e.g., of requirements analysis and

architecture design methods, can automatically tag artifacts according to their

location within the matrix. This assumes that the tool has been configured with an

AMT matrix.

15.6 Related Work

In the software engineering community, viewpoints have been introduced to cap-

ture different perspectives of stakeholders involved in the development. The

ViewPoints framework [13] introduces a viewpoint to consist of a representation

style, a domain, a specification, a work plan and a work record. A viewpoint is used

to express the concerns of a particular stakeholder involved in the development.

The representation style is used for describing in which language a viewpoint is

expressed. The domain is a name given to the part of the world that is seen by the

viewpoint. The specification is used to capture a partial system description, using

the representation style. The work plan captures the development process know-

ledge in this viewpoint and the work record the development history.

The ViewPoints framework has been used in [26] to explore the relationship to a

software development process. For that purpose, a viewpoint template is

introduced where only the representation style and the work plan slot is fixed.

A software engineering method is then a configuration of viewpoint templates

and their relationships.
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If a software system is described from different viewpoints, this immediately

raises the issue of consistency and inconsistency. In the ViewPoints framework, this

is addressed by defining relationships between viewpoints, called inter-viewpoint

rules. These rules can be checked at certain points in the development process.

In the context of the ViewPoints framework, many case studies have been

performed. The ViewPoints framework has triggered substantial research in the

area of consistency management (see, e.g., [3, 10–12, 16]). The work presented in

this paper builds on the original work by Finkelstein et al. and extends their

concepts in a method engineering context, combining them with realization levels

and ideas from model-driven development.

Recent work by Anwar et al. [1] introduce the VUML profile to support view-

based modeling from analysis to coding. Each actor of a system is associated with

a viewpoint. In each viewpoint, use cases and scenarios are described and class

diagrams are derived. A VUML model is then composed of these partial models.

This composition is automated using model transformations. In contrast to our

work, Anwar et al. focus on model composition for a fixed set of viewpoint models.

They do not address the problem of configuring and defining the relationship

between different artifacts.

In the software architecture community [24], an architectural viewpoint consists

of a ‘viewpoint name, the stakeholders addressed by the viewpoint, the architectural

concerns framed by the viewpoint and the viewpoint language.’ A viewpoint can

also include consistency and completeness checks and heuristics, patterns, guide-

lines. It is explicitly mentioned that a viewpoint is a template for a view. A view

itself is an aggregation of models that represents the software system from a specific

angle, focusing on some concerns. According to Rozanski and Woods [31],

a viewpoint is defined as ‘a collection of patterns, templates, and conventions

for constructing one type of view. It defines the stakeholders whose concerns are

reflected in the viewpoint and the guidelines, principles, and template models for

constructing its views’.

When comparing the different notions of viewpoints one can conclude that

viewpoints in the different approaches are very similar. In all cases, a viewpoint

consists of stakeholders whose concerns are addressed, a notation (representa-

tion style or modelling languages), some method or process knowledge, as well

as viewpoint relationships. Our work is in line with all presented definitions and

combines disjoint/discrete viewpoints with realization levels in a novel way to

structure the artifact landscape (i.e., the model space) in a project to the benefit

of the various stakeholders. Cross-cutting viewpoints are not yet covered by out

AMT formalization.

Another area of related work is tool and model integration. Milanovic et al. [25]

describe how artifacts created in a software development process are stored and

managed in the BIZYCLE repository. This repository includes repository manage-

ment operations such as consistency and metadata management and provides

central point of integration.

Using a configuration manager, artifacts and their relationships as well as

consistency rules can be defined which are then used by the automatic artifact
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management during a project. The ideas presented by Milanovic et al. are similar,

however, their focus is on the common repository. It is not described how such

a common repository can be technically realized. Our AMTMatrix concept and the

metamodel can be used to structure the common repository when realizing an

integrated tool infrastructure. Recent work by Broy et al. [5] criticizes the current

state-of-the art of tool integration and proposes different ways to improve the

situation. We believe that our AMT matrix can be used as one means and basis

for seamless model-based development.

Earlier work in the area of consistency management has already recognized

that consistency constraints are dependent on the development process and the

application domain. K€uster [20] describes a method how consistency management

can be defined dependent on the process and application domain. Further, the large

body of work on consistency checking and resolution (see, e.g., [9, 17, 23]) must be

integrated and adapted by tools working with the AMT Matrix in order to achieve

full benefit of it. This also applies to the work on traceability which establishes

traceability links based on, e.g., transformations and the work on defining and

validating model transformations (see, e.g., [21, 22]).

15.7 Conclusion

In this chapter, we first observed several problems encountered by method creators

and tool builders as well as requirements engineers and architects on projects.

We then generalized these problems into conceptual artifact management issues

and argued that these issues are currently not sufficiently addressed by techniques

and tools from the software engineering and modeling communities. Based on these

observations, we introduced the Artifact and Model Transformation (AMT) matrix

which provides a categorization and structuring means for artifacts and their

relationships in a project. We developed and presented our solution in three steps:

1. Specify AMT matrix dimensions (i.e., viewpoints and realization levels by

default).

2. Position method-specific artifact types in AMT matrix entries (according to their

purpose).

3. Populate project-specific AMT matrix instance with artifacts (according to their

type).

In its default incarnation, our approach combines two commonly applied

complexity management concepts, viewpoints and realization levels, to their

mutual benefit. Other and/or additional structuring dimensions can be defined

(future work). An AMT matrix can be populated with artifact types to support

the needs of a specific method; project teams then create and manage artifact

instances of these types by their matrix position. Such a configuration requires

the definition of relationships and transformations between artifacts as well as

consistency and traceability management. We provided a metamodel for the
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AMT Matrix which can be used as a reference model for integrating AMT matrix

concepts into tools. We also presented an exemplary OOAD/CBD instantiation of

the AMT metamodel and applied it to a sample project. Finally, we discussed the

usage scenarios, benefits, and the implications of our approach.

In future work, we plan to evaluate further our approach, e.g., via personal

involvement in industry projects (action research) and via joint work with

developers of commercial requirements engineering and architecture design tools.

Further research includes the elaboration of how consistency and traceability

management can be defined on the basis of the AMT matrix as well as adapting

existing modeling tools to support the AMT matrix when defining modeling

artifacts. Cross-cutting viewpoints also require further study; tagging the matrix

entries that address cross-cutting design concerns such as performance and security

to slice AMT instances seem to be a particularly promising direction in this regard.
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Chapter 16

Onions, Pyramids & Loops – From

Requirements to Software Architecture

Michael Stal

Abstract Although Software Architecture appears to be a widely discovered field,

in fact it represents a rather young and still maturing discipline. One of its essential

topics which still need special consideration is systematic software architecture

design. This chapter illustrates a set of proven practices as well as a conceptual

method that help software engineers classify and prioritize requirements which then

serve as drivers for architecture design. All design activities follow the approach of

piecemeal growth.

16.1 Introduction

Although Software Architecture appears to be a widely discovered field, in fact it

represents a rather young and still maturing discipline. One of its essential topics

which still need special consideration is systematic software architecture design.

Currently, there are many open issues regarding the design process. In particular,

does an appropriate practice exist that allows engineers to systematically turn

architecturally relevant requirements into high quality design? After all, the quality

of a software system depends on its ability to achieve goals of the involved

stakeholders. This chapter illustrates a set of proven practices as well as a concep-

tual method introduced within SIEMENS that helps software engineers classify and

prioritize requirements which then serve as drivers for architecture design. All

design activities follow the approach of piecemeal growth. For this purpose, two

models, the Onion and the Pyramid model, help structure the design process in a

requirements – and risk-driven way. Engineers start emphasizing the most impor-

tant forces before moving to less important ones. Such an approach ensures that

engineers implement the most critical requirements, while they may optionally skip

less important goals in case of budget or time problems. The method supports

and favors but is not constrained to an iterative-incremental process. It introduces

change as an additional force in the design process, because change in projects is

the rule not the exception. Thus, although engineers will typically not be able to

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_16, # Springer-Verlag Berlin Heidelberg 2011
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provide the optimal architecture solution due to such changes, they will at least be

able to create solutions with sufficient quality and traceability.

It is important to note, that the introduced architecture design process does

not claim to be the only possible approach for systematic architecture design.

Nor does the sequence of steps and activities define the only possible order. Rather

the process introduces best practices from real and successful system development

projects at SIEMENS.

16.2 Systematic Design – The Principle of Piecemeal Growth

16.2.1 Loops

An important topic for designing a software system is the kind of development

process the designers should facilitate. In practice, a Big Design Upfront approach

cannot work, because its success would have a lot of prerequisites such as the early

availability of all requirements in a consistent and complete specification, the stability

and suitability of the project-specific technology roadmap, and the early detection and

removal of any design errors. In practice, many things keep changing in a software

development project – “panta rhei” as the Greek philosopher Heraclitus once said.

Thus, professional software architects should prefer piecemeal growth which implies

that the software architecture design process reveals [1] the following properties (see

Fig. 16.1):

• An iterative approach which does not only focus on adding new features in

iterations but also emphasizes quality evaluation and refactoring. Before and

after extending a software system, necessary steps include evaluating the archi-

tecture and refactoring it when needed. Only with regular architecture assess-

ment and refactoring in place we can keep the architecture under control by

preventing architecture erosion due to accidental complexity.

• An incremental approach where teams or persons develop different parts of system

architecture at different times or at different pace and integrate the completed

artifacts into the overall software design. The result of such integration is always

Fig. 16.1 An iterative-

incremental design model is

appropriate for software

design
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a working product. This kind of continuous integration is the approach prefera-

ble to any big bang integration.

An important extension to these properties of iterative-incremental design is

to embrace change instead of relying on a frozen set of requirements. It should

however be noted that for piecemeal growth it is not required to commit to an agile

approach with its time-boxed iterations, agile principles, values and development

methods.

The principle of piecemeal growth imposes some consequences on software

architecture and design (see Fig. 16.2). Software architects should perform their

design activities in the following order:

• Identify and prioritize all factors that have an influence on their work such as

requirements, risks, business goals, or technology constraints. Prioritization of

forces may happen in different ways using existing methods and tools such as

leveraging Quality Trees for operational and developmental requirements [2];

• Prepare for the actual design, for instance create a model of the problem domain

using Domain Driven Design or other approaches;

• Create a coarse-grained architecture baseline in an iterative loop handling

strategic requirements and important tactical requirements;

• Iteratively for each requirement (or a semantically related group of requirements):

• Evaluate the current state of the software architecture under construction,

perform a SWOT analysis (Strengths, Weaknesses, Opportunities and

Threats), refactor the software architecture to eliminate the problems found

and prepare it for further refinement;

Fig. 16.2 Iterations are introduced in the architecture creation process to help master complexity

and to avoid accidental complexity. Piecemeal growth is ensured by iterative loops
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• Refine the architecture baseline with the selected requirement or requirement

group until eventually the working software system is ready for rollout and

meets its expectations.

16.2.2 Drivers of Systematic Design

To achieve internal architectural qualities such as simplicity, traceability or expres-

siveness, architects should follow some fundamental guidelines:

• Requirements should drive all architectural decisions. There must not be any

architecture entity introduced without an associated architecturally relevant

requirement. With other words, for introducing an entity into software architec-

ture, software engineers need a concrete design rationale which explains the

exact need for this entity. Otherwise architects and developers may come up with

design pearls that don’t satisfy specific needs but increase the likelihood of

accidental complexity. Requirements-driven design also helps with traceability,

because each design decision is based on a concrete requirement. In addition,

it supports simplicity and expressiveness.

• Risk-driven development. Designers, i.e., architects and developers, need to

address factors that impose high risks before dealing with low risk issues.

Risk mitigation is an important topic for architecture design. Architects should

introduce appropriate mitigation strategies for all identified risks. For example,

strategic technology decisions such as the use of a particular distribution middle-

ware might stay in conflict with operational qualities such as performance

expectations. Thus, a risk mitigation strategy for this concrete example could

comprise building a prototype for investigating the technical feasibility of the

performance aspect using the prescribed middleware technology.

• Test-driven Development and Architecture Evolution. The main property of

piecemeal growth is the continuous evolution of the software architecture.

Architects add new constituents, and change or even remove architectural

parts. Hence, they must ensure that each step in architecture evolution does

not invalidate previous steps by affecting whether the software architecture

meets its requirements. For this purpose, it is necessary to introduce regular

testing activities as well as architecture, design and code introspections.

To improve the architectural structures with respect to internal architecture

qualities and eliminate unwanted side-effects architects should plan regular

architecture refactoring activities.

16.2.3 Architecture From 10,000 Feet – Onion Model

As previously explained, it is the goal of software development projects to ensure

that the resulting system meets all architecturally-relevant requirements. The Onion
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model (see Fig. 16.3) is supposed to introduce a systematic model for all necessary

architectural design activities.

Its core introduces all functional aspects of a software system, thus representing

the problem domain functionality software engineers need to implement. All other

requirements, no matter whether of operational, developmental or infrastructural

type can only be addressed with these functional responsibilities in mind. For

instance, it is not useful to build a flexible or high performance system without

any knowledge about the actual parts that need to be flexible or well performing.

Of course, we must have previously assigned unique priorities to all functional

requirements – and likewise to all other requirements. Consequently, designers can

move step by step from the functional requirement with the highest priority down

to the one with the lowest priority. This does not imply that all functional or other

requirements must be known upfront nor does it mean we need to cover them in full

detail. It only suggests we should at least know a sufficient subset of high priority

requirements in advance, where “sufficient” heavily depends on influential factors

such as forces from the problem and solution space which is the reason why it proves

to be (almost) impossible to specify a rule of thumb. When applying use cases as

a means for functional design, we could also adhere to the concept of piecemeal

growth by first considering the main scenarios (also known as “Happy Day”

scenarios), followed by alternative or exceptional flows (“Rainy Day” scenarios).

After designing the functional core of the software system with a priority – and

requirements – driven design process, the two subsequent phases consist of first,

addressing infrastructural and then, operational requirements. Note, that we could

also view infrastructural requirements as a subset of operational qualities. However,

infrastructure prerequisites such as the necessity of distributing logic or executing

it concurrently typically reveal an indispensable precondition which operational

(and developmental) qualities must take into account. Therefore, it often turns out

useful to separate infrastructural qualities with respect to distribution and con-

currency from operational qualities and to assign them the highest priorities.

Thus, the first sub step comprises determining an appropriate distribution and

concurrency infrastructure. Architecture patterns such as Broker or Half-Sync/Half-

Async help find the main constituents of this infrastructure and can be further

Fig. 16.3 The Onionmodel structures the architecture and design process into four different phases
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refined using design patterns such as Proxy or Monitor Object. In this process,

architects should integrate the software architecture they have already designed as

functional core with the distribution and concurrency infrastructure. This way, they

are beginning to mix in, step by step, elements from the solution space into

architectural concepts from the problem space.

In the third phase software architects integrate the remaining operational qualities

such as security, performance or reliability ordered by descending priorities. This

activity resembles the previous one for introducing the distribution and concurrency

infrastructure. Designers take care of the operational quality, conceive an architec-

tural infrastructure to handle the quality, and then integrate the current architecture,

i.e. functional core plus infrastructure, with the architecture entities imposed by the

current quality. If architecture and design patterns exist for the quality under consid-

eration, designers should leverage existing best practices instead of reinventing the

wheel. In the Onion model each operational quality represents an additional onion

layer.

As all architecture refinements and extensions are priority-driven, more impor-

tant requirements will have more impact on the software architecture than less

important requirements. For instance, if security is considered more important than

performance, we’ll end up with a different software system, than if performance

were considered the predominant quality. Thus, it is an essential prerequisite to

assign unique priorities to each requirement. Otherwise, architects would face

ambiguous precedence rules when facing design decisions.

The fourth phase in the Onion model addresses developmental qualities such

as maintainability, manageability or modifiability. Again, designers handle these

qualities in descending priority order. This activity happens after designing the

operational qualities, because developmental properties need to operate on func-

tional and operational entities in the software architecture. With other words, we

require those architecture parts to be already available that we expect to modify. For

example, modifiability could imply the exchange of a specific functionality such as

the communication protocols used. It could also mean to configure algorithms or

the sizes of thread pools for performance improvement.

16.2.4 Dealing with Bottom-Up Requirements in the Onion Model

As the Onion model illustrates, the obvious way to create software architecture is

via a top–down, breadth-first approach. However, only a few software development

projects start as green field projects. In most project contexts various constraints

limit the freedom of designers. For example, in the following cases:

• Usage of specific operating systems, legacy components, middleware, standard

information systems, or tools is required.

• In Embedded and especially in Real-Time systems, resources such as CPU time

or memory are only available in limited quantity.
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• For the integration into an existing environment, the software system under

development needs to provide interfaces to external systems or use external

interfaces.

How can designers cope with such Bottom–up requirements? An appropriate

solution requires stakeholders to assign priorities to these like to all other

requirements and to use them as input for the kind of top–down design promoted

by the Onion model. With this strategy, we can ensure that bottom–up constraints

have the necessary impact on the software architecture and its implementation.

Of course, stringent limitations such as restricted main memory must get the highest

possible priorities as they directly affect the feasibility of all other architecture and

technology decisions.

16.2.5 How Deep Should We Go? – The Pyramid Model

A main challenge of software architecture creation is to define a clear boundary

between strategic and tactical design. When is strategic design supposed to end and

tactical design supposed to start?

We expect software architects to define an architecture baseline as well as

guiding principles the developers should adhere to during fine design. If, on one

hand, the architecture contains too many levels of abstraction, for instance from the

system level down to the method level, first of all, the whole architecture vision

might get lost, and secondly complexity becomes unmanageable due to the large

number of architectural entities and their relations. On the other hand, an insuffi-

cient number of abstraction levels lead to architecture baselines that only scratch

the surface of the problem and are open to interpretation by developers.

As a rule of thumb, software architects should follow the Pyramid model (see

Fig. 16.4) that proposes three levels of abstraction. This model has been derived

from experiences in many projects at SIEMENS. For a large software system, the

baseline architecture suggests the following abstractions:

Fig. 16.4 Architects should

constrain their work to three

levels of abstractions as

illustrated by the pyramid

model
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• System as a whole: In this abstraction layer the system is considered a black box

that is in charge of a set of responsibilities and that lives in an environment with

which it interoperates.

• Subsystems: If we leave the black-box view and enter a grey-box view,

the system consists of major interrelated building blocks, typically

called subsystems, which are responsible to implement the system’s core

responsibilities.

• Components: Subsystems are usually too coarse-grained in order to understand

how requirements such as use cases are mapped to the software architecture.

Thus, architects introduce interrelated components as constituents of subsystems

in order to reveal a more detailed design. In contrast to subsystems that represent

a kind of artificial abstraction level, programming platforms often support the

notion of components.

Note that terms such as subsystem or component in this context denote architec-

tural entities with different abstraction levels. While subsystem introduce a coarse-

grained partitioning of system responsibilities, in the ideal case each subsystem

representing one responsibility, components define the fundamental finer-grained

building blocks to implement the subsystems.

This model of abstraction is not prescriptive. In a pure Service-Oriented Archi-

tecture we would rather introduce system, services and components as abstraction

layers, while for small systems abstraction layers such as system, component, and

class might be more appropriate. Architects choose whatever model is most suitable

with respect to their concrete problem context.

16.2.6 Detailed Process Steps for Architecture Creation

The Onion and the Pyramid model add important means to the tool & value set of

software architects as these models provide guidance how to map requirements to

architecture decisions and where to set the boundary between software architecture

and design. Both models focus on a coarse-grained level of establishing architecture

decisions systematically from requirements. However, they do not define an ade-

quate architecture design process with more detailed steps. To establish the coarse-

grained feedback model for software architecture design that got introduced in

Fig. 16.2, different alternative solutions are possible. Nonetheless, we can identify

some common practices software engineers should employ to create the design

efficiently and effectively, no matter what concrete problem context they are

actually facing. To illustrate the conceptual idea, let us introduce a kind of process

pattern that is based upon these practices which it instantiates and concretizes in

a concrete process model (see Fig. 16.5).
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16.2.6.1 Preconditions and Assumptions

Our assumptions and preconditions for the applicability of the process pattern are

as follows:

• In the context of the system development project, a development process model

has been already defined or prescribed by the organization. In the ideal case, the

development process uses an iterative-incremental or agile process model, but

the suggested process pattern may also be applied in an iterative waterfall model.

• The software architects and developers know the business goals of their organi-

zation. Business aspects are important for dealing with architecture decisions

and risks.

• We also assume familiarity of the development team with the requirements and

other forces and constraints that drive system development, but we don’t expect

a frozen and complete set of requirements nor their availability in all details.

Even if the set of requirements isn’t complete, there needs to be a sufficient

number of core requirements to start architecture creation, for example high

priority use cases and infrastructural/operational requirements. There is no

metrics for quantifying “sufficient,” as this heavily depends on various factors

such as maturity of the problem domain or available expertise and knowledge.

The available requirements should have been prioritized by all stakeholders to

allow architects and developers decide which direction to use in all decisions. In

addition, the requirements and other forces should have been specified with the

necessary quality. i.e., they need to be cohesive, complete, correct, consistent,

current, unambiguous, verifiable, feasible, mandatory, and externally observable.

• Software architects have already taken the system requirements and figured out

the architecturally relevant requirements.

Perform
user requirements

elicitation

Create
domain model

Model dynamics
of scenarios

Determine scope
& boundaries

Create first 
conceptual draft

Structure the
baseline

architecture

Introduce
deployment

views

Define
principles &
guidelines

Plan and realize
increments

Fig. 16.5 Architects and developers need to execute several steps to create the implementation
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The following sections explain the details of the activities that are introduced in

Fig. 16.5.

16.2.6.2 Show Case

The description of the process steps is accompanied by concrete examples from

SIEMENS projects with the foremost example being a concrete Warehouse Man-

agement system developed for a large organization. Such a system is used to load

and retrieve goods into respectively from various kinds of storages using specific

storage mechanisms. The transportation of goods is also considered as a special

kind of storage such as a belt or a cart. All operations are triggered by orders.

Obviously the main use cases comprise manage storages, query storages, load and

retrieve goods. In addition, the system is supposed to integrate with existing ERP

systems.

Two of the key operational and developmental requirements have been:

• High Performance when loading or unloading

• High Scalability (and Concurrency) in terms of orders processing

16.2.6.3 User Requirements Elicitation

In the first step architects consider only functional aspects. They create a set of use

cases with high priorities together with those stakeholders who are in charge of

requirements engineering. High priority use cases are covered first because they

need to have the most significant impact on the functional core (as described in the

Onion model). Use cases in this set should be available as textual use case

descriptions (see Fig. 16.6), not as Use Case Diagrams, because Use Case diagrams

provide an overview of use cases without offering any details or explanations.

Fig. 16.6 Architects need

use cases in a textual

description as explained by

Alistair Cockburn
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If the number of high priority use cases is very large, architects should partition

each use cases in a success scenario and alternative flows as appropriate strategy for

mastering complexity. They could consider the success scenarios first before

continuing with the alternative flows.

16.2.6.4 Create Domain Model

Stakeholders in a project should create a model of the problem domain or use an

existing one for efficient and effective communication. Software engineers require

a formal model to understand user requirements and their contexts. A formal model

could also end up in a DSL (Domain-Specific Language) and serve as a base for

automation. While use cases provide a black box view of the software system,

especially of its functional aspects, the problem domain model can help understand

how to actually implement the use cases, thus moving from a black box view to

a white box view. One possible approach for this kind of domain engineering was

introduced by Eric Evans in his book [3]. It is essential that architects, requirement

engineers and domain experts create the model in cooperation to avoid ambiguities,

misunderstandings, inconsistencies and incompleteness. Typically, at least an implicit

model of the problem domain is already available that needs to be turned to an explicit

and formal model. This model reveals commonalities but also variability which is

particularly important for product line engineering. It is essential to mention that

creating the domain model and the subsequent step (Model Dynamics of Scenarios)

are typically not strongly separated but go partially hand in hand.

In the Show Case aWarehouse Management system had been developed by
SIEMENS Industry Logistics. Figure 16.7 reveals a subset of the problem domain
model that the softwarearchitectsintroduced.

16.2.6.5 Model Dynamics of Scenarios

With a (subset of the) problem domain model and prioritized and partitioned use

cases in place, software architects can map the black-box use cases to white-box

scenarios relying solely on problem domain concepts. This helps further refine the

Fig. 16.7 Example – a problem domain model for warehouse management
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problem domain model by introducing relations and interactions between the

various domain entities. Engineers should avoid introducing concepts of the solu-

tion domain too early, because otherwise both domains get intertwined without

necessity. Which concrete diagram types designers use for this modeling step, is not

important. For instance, they may choose UML activity diagrams or UML sequence

diagrams depending on their concrete needs and experience.

Figure 16.8 represents an activity diagram which is used for modeling the

internal interactions necessary to implement the use case “Process Order” in the

Warehouse Management system.

16.2.6.6 Determine Scope & Boundaries

A fundamental issue in every software architecture design is embedding the system

under construction into its environment. What are its primary and secondary actors

and which interfaces does it provide or require? This information is relevant for

system design, as it determines what is or isn’t the responsibility of the software

engineers. For example, a Web Shop may implement its own order processing

system or use an existing Enterprise Information System such as SAP R/3 instead.

To define the system boundaries, two models are of particular value. The UML Use

Case diagram, such as in Fig. 16.9, helps identify external actors interacting with the

system, while a Context diagram might even define provided and required

interfaces. In a product line engineering approach this step is even more demanding

as it needs to determine all internal part of the product line platform (commonalities)

as well as the type and parameters of product differences (variability).

16.2.6.7 Create Conceptual Draft

After the previous steps, software architects are able to define the architecture

baseline. For this purpose, they follow the Onion model and the Pyramid model.

Fig. 16.8 Scenarios are white-box instantiations of black-box use cases
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The functional core is extended step by step with different layers representing

infrastructural, operational or developmental requirements. Thus, concepts of the

solution domain are introduced to the functional entities. At the end of this step,

a conceptual high-level software architecture design is available.

It is up to the software architects whether and to what extent they take develop-

mental qualities into account. One alternative strategy might be to cover mandatory

and important developmental qualities in this step while postponing all other devel-

opmental qualities to the later step refining the architecture baseline through end-

to-end slices. Another alternative could consist of addressing all developmental

qualities in the later refinement phase. Which approach they choose, depends on

the criticality, complexity and relevance of developmental qualities. For example, in

a product line engineering organization variability management denotes an important

issue for domain engineering and should already be addressed in this architecture

creation step.

In Fig. 16.10 an original sketch of the conceptual architectural baseline of the
Warehouse Management system was derived from the problem domain object
model by applying the Onionmodel approach.The Pyramidmodel helped to con-
strain the architecture to three levels ofarchitecture abstractions (system, subsys-
tem, component). Usingarchitecture anddesignpatternshelpedwithproviding the
infrastructural, operationalanddevelopmentallayers.

System

Administrator

Operator

SAP

Archive

CRM

SAP

Fig. 16.9 Use case diagrams and context diagrams help identify the system’s boundaries
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16.2.6.8 Structure the Baseline Architecture

If architecture design created an architecture baseline without considering internal

quality aspects such as separation of concerns, the activity would result in a rather

unstructured architecture baseline. Architecture patterns [4, 5] such as Pipes &

Filters or Layers help structure the software architecture to better adapt to future

maintenance and evolution. This activity can often be tightly intertwined with the

previous activity (Create first Conceptual Draft).

TwoSIEMENSexamples:Fig.16.11demonstratesthethreeTierarchitectureof the
WarehouseManagement systemasenabledby theLayersarchitecturepattern.

In Fig. 16.12 the high level software architecture of an IP-based telecommu-
nications system built by SIEMENS is visualized. The architects leveraged the
Layers patterns to partition functionality into different layers of abstraction, granu-
larityandchange.

16.2.6.9 Introduce Deployment Views

As a further step to actual implementation, we need to address deployment aspects,

for example by using UML deployment diagrams. Deployment comprises the

Fig. 16.10 With the onion model and the pyramid model, software architects can derive an initial

architecture baseline
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mapping of the software architecture to the physical system architecture, mostly

driven by operational and developmental aspects. The necessary responsibilities

include assigning concrete artifacts such as executable files to computational nodes

as well as describing the communication between physical elements.

A possible physical deployment for a Web-based Warehouse Management
systemismodeledusingadeploymentdiagram(Fig.16.13):

ERP
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for performance and 
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Business 
logic
subsystems

Infrastructure
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Fig. 16.11 In the warehouse management system the Layers pattern helps creating a three tier-

architecture

Fig. 16.12 Architecture patterns such as Layers help improve internal software quality and

support future evolution and maintenance
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16.2.6.10 Define Principles and Guidelines

After availability of the initial architecture baseline, software architects must take

additional preparations for the later implementation steps. In order to employ some

architecture governance, they are supposed to introduce principles and guidelines

developers must adhere to. Otherwise, the refinement of the architecture baseline

can lead to lack of internal architecture qualities, for instance to insufficient

symmetry, but also to a failure meeting operational or developmental qualities.

Typical examples are crosscutting concerns such as coding styles, exception

handling or logging. When every developer introduces her own coding style,

expressiveness and simplicity will inevitably suffer. Such principles and guidelines

comprise (but are not limited) to the following areas:

• Coding Guidelines

• Application of specific software patterns

• Handling of cross-cutting concerns such as error handling, logging, auditing,

session management, internationalization

• Design tactics at least for the most critical operational and developmental

qualities

• Idioms for applying specific technologies and tools

<<application server>>
:Dell PowerEdge 3600

{OS = Red Hat Enterprise Linux 4}

<<database server>>
:Dell PowerEdge 3400

<<OS>>
:RedHat Enterprise Linux 4

<<client workstation>>
:StandardPC

<<artifact>>
GUIClient.exe

<<client workstation>>
:StandardPC

<<web server cluster>>
:Apache2.1

{clusterCount = 4}

<<servlet container>>
:Tomcat6

{JVM =  Sun Hotspot 2.0}

<<artifact>>
webstore.war

<<database>>
:PostgreSQL10

<<browser>>
:WebBrowser

SOAP /
HTTP

HTTP

SQL

Fig. 16.13 Deployment denotes the mapping of software architecture artifacts to physical entities
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For the most critical topics, software development projects might assign responsi-

bilities to subsystem architects or whole teams who are in charge of providing and

enforcing guidelines how developers are expected to handle particular concerns.

Such guidelines do not necessarily resemble formal specifications; they might also

include tutorials (Fig. 16.14).

16.2.6.11 Plan and Realize Increments

The last but most extensive phase consists of the iterative-incremental refinement of

the architectural baseline. Again, this step is driven by the Onion model. In contrast

to strategic design it is not limited by the Pyramid model but introduces whole end-

to-end slices of the system, eventually resulting in implementation prototypes. The

testing strategy gains significant importance for quality assurance as does the

application of architecture analysis and the use of appropriate tools.

InFig.16.15 the iterative and incremental fine designof the SIEMENSWarehouse
Management systemis illustrated.The diagramshowsan intermediate state of the
system after a couple if iterations. For sake of brevity, only a part of the system
ispresented.

16.2.7 Good Practices

16.2.7.1 Why We Need Good Practices

To survive as software architects, it is important to carry around some kind of

treasure chest filled with best practices no matter where we go. Obviously, there are

lot of experiences and competences that are tightly connected to a specific problem

Fig. 16.14 Software

architects introduce

guidelines and principles that

govern the refinement process
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or solution domain and cannot be easily generalized. But there are also some rules

of thumbs, patterns and practices we can leverage independently of our domains.

This section provides some common hints and tips without striving for complete-

ness. These guidelines are all taken from my experiences in various projects.

16.2.7.2 Re-use Perspective

The introduced architecture design process introduced works well for software

development projects, no matter whether they start from scratch or can be based on

existing artifacts. Sometimes, the organization has already gained some familiarity

with the problem and solution domain. In this case, a reference architecture might be

available that reflects knowledge and experience how to build a software system in

the given domain(s). If software architects can leverage a reference architecture, their

job is constrained to refining and instantiating the reference architecture with the

project-specific forces, i.e., requirements, constraints, and business goals. In the ideal
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Fig. 16.15 During the last phase, software engineers create the implementation step by step
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case, the organization has already matured into a product line organization [6, 7]

and can instantiate the whole software system by configuration and adaption of core

assets. Even if such systematic re-use isn’t established, a common practice is to re-use

design or implementation artifacts to reduce costs and time. Software patterns such as

design patterns and architecture patterns help introduce proven solutions for problems

in specific contexts instead of reinventing the wheel.

16.2.7.3 Software Architecture Review and Refactoring

As already explained, creating a software system should not consist only of adding

new features. In all iterations architects need to assess content and quality of the

software architecture and get rid of all architectural deficiencies early. Otherwise,

top–down design will continuously extend the architecture, making it increasingly

difficult or even impossible and too costly to revise earlier decisions. This is where

software architectures begin suffering from design erosion until they eventually have

to be completely reengineered or rewritten. To identify architecture smells such

as dependency cycles, unnecessary abstractions, insufficient coupling or cohesion, or

inadequate design decisions architects should apply a method for architecture evalu-

ation. Several methods for software architecture review have been proposed [8–10].

For regular evaluation an experience-based flash review or an ADR (Architecture

Design Review) will suffice. Tools for CQM (Code Quality Management) or soft-

ware architecture assessment show many benefits in this context, keeping designers

up-to-date about the state of the software architecture. After software architects have

identified deficiencies they should apply software architecture and code refactoring.

However, this activity needs to obey the same principles as systematic software

architecture design. For instance, all issues with respect to strategic requirements

have to be resolved before the tactical issues are being tackled, and inadequate

architecture decisions regarding high priority requirements should be addressed

before those concerning requirements with low priority.

16.3 Outroduction

On one hand, creating software architecture is easy because every implementation

has its implicit software architecture, even if software engineers did not explicitly

define one. On the other hand, high quality software architecture is hard to achieve,

because it requires software engineers to systematically create a software system

that meets all requirements and business goals. Likewise, it is critical to gain high

quality in software architecture, because all failures will lead to more costs and time

needed for development and maintenance.

Software architecture is both a design artifact and a systematic process which

serves as a fundamental vehicle to meet the requirements of customers and deve-

lopment organizations. As change is the rule and not the exception in software
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engineering, software systems require modifications, for example to eliminate

deficiencies or to adapt to new requirements or technologies. Evolution of software

architecture needs to happen systematically, because otherwise design erosion will

start to creep into the software system, first polluting some local areas, but finally

leading to software architectures that must be completely reengineered or rewritten.

Another major reason for design erosion is accidental complexity which occurs

if software engineers make wrong decisions, do not understand the requirements,

introduce design pearls not rooted in requirements, or implement code that doesn’t

abide to the software architecture or leading guidelines. A good countermeasure to

prevent accidental complexity is based upon strictly following a requirements-

driven, risk-driven and test-driven architecture development process applied jointly

with architecture evaluation and refactoring activities. This process should support

an iterative-incremental approach with piecemeal growth instead of emphasizing

on a Big Bang design that simply can’t work for fast moving targets like software

development projects. With other words, if we can’t avoid change we should embrace

it. In contrast to common believe, software architecture design is a crosscutting

activity of the overall system development. We can’t just define a fixed boundary

for design activities. Software architecture starts when the business goals are defined

and ends when the software system is phased out. Requirements are the major drivers

when creating a sustainable software system. To this end, requirements are – or at

least should be – a software architect’s best friends.

Eachproblemthat Isolvedbecamearulewhichservedafterwardstosolveother
problems^RenØ Descartes,1596^1650, in “DiscoursdelaMethode”
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Chapter 17

Emerging Issues in Relating Software

Requirements and Architecture

J. Grundy, P. Avgeriou, J. Hall, P. Lago, and I. Mistrik

Many emerging issues challenge us when attempting to relate software require-

ments and architectures. These include but are certainly not limited to:

• Do requirements inform or constrain architecture or vice-versa?

• Do new development processes and methodologies e.g. model-driven engineer-

ing, agile process, open sourcing, outsourcing impact on the relationship

between requirements and architecture, and if so, how?

• Do new technologies and applications e.g. cloud computing, ubiquitous com-

puting, social network applications and end-user computing impact on the

relationship between requirements and architecture, and if so how?

• How can developers best identify, document, manage and utilize the myriad

of relationships between requirements and architecture? What process and tool

support is required to do this?

Many of the previous chapters have touched on, some in detail, the issue of

whether we should develop a set of software requirements first and then an architec-

ture for a system based on these requirements, or whether available architectural and

technological platforms must be considered when actually eliciting, documenting

and using requirements. Traditional wisdom has been that requirements for a system

are captured and then a suitable architecture developed to fulfill these [2, 6]. As

we have seen, many application domains, development approaches and technology

solutions challenge this approach. For example, an understanding of architectural

characteristics and technologies available for a problem domain are useful when

discussing possible requirements with stakeholders e.g. what is actually feasible and

what is not [3]. Similarly, many approaches have adopted round-trip engineering

between requirements and architecting where enhancing or changing one necessarily

impacts greatly the other. Many of the previous chapters indicate that the field is

moving towards a view that requirements and architecture for a software system are

necessarily closely related and therefore often need to be engineered, if not in

parallel, then closely informing one another in an iterative manner. Some domains

the notion of what the requirements are or what the available technology solutions to

architect are ill-defined. Open source projects are an example where requirements are

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
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often organic and emerge from user communities over time. Rapid technology

change fields like consumer appliance engineering and cloud computing similarly

have architectures and technologies rapidly changing during development. Some

applications have requirements that are difficult to anticipate during development

e.g. social networking applications and mash-ups where an application may be

composed of parts and the “requirements” both dynamic and run-time emergent

from stakeholders.

A number of new development processes and methods have emerged in recent

years which make the relationship between requirements and architecture a chal-

lenge to elicit or maintain. Model-driven engineering and Genetic Algorithms (GA)

have been applied to taking high-level models and architectural information

and synthesizing code and configurations of systems [1, 10]. Could they be used

to either generate architectures from suitable requirements models. In a related way,

could requirements models be usefully extracted from existing architectural models?

Agile processes have received much attention and they bring a very different focus

to both capturing and using requirements and working with architectures [7]. In

many agile methods architecture is emergent and requirements prioritization and

alignment with architecture is highly volatile. Open sourcing, as noted above, is often

characterized by highly distributed, heterogeneous teams and both requirements

and architecture are often emergent. No one group of stakeholders owns either

the requirements or the technology solutions used to realize them. Outsourcing

typically requires well-defined architectures to work within along with well-defined

requirements. How can more agile processes or domains with emergent requirements

and/or architectures use outsourcing approaches? End user computing allows non-

technical experts to modify their systems to configure them to their needs. By

definition, requirements are highly volatile and emergent and even architectures can

be vastly different depending on mash-up integrations.

A variety of new technologies and applications are impacting both requirements

and architecture and their relationship. Cloud computing and self-architecting

platforms offer a new way to architect systems but also impact on overall system

and application requirements, particularly quality of service attributes non-

functional requirements [8]. Similarly, ubiquitous computing systems are made

up of a wide variety of components and dynamically evolving architectures. They

have a range of users and are often context-dependent. This dramatically impacts

on requirements and architecture volatility. In a similar way, social networking

applications with mash-ups and user-selected applications, and mobile smart

phones and iPods with dynamic application content similarly result in highly

evolving technology platforms and application sets. These are, in contrast to

traditional software systems, heavily user-driven in terms of evolving requirements

and necessary architectural solutions, often very heterogeneous, embodied in user-

selected and configured diverse applications.

Development process and tool support for requirements engineering and software

architecting has become very sophisticated. A number of previous chapters in this

book have highlighted this. However, support is still rather limited for managing the

diversity and complexity and relationships between software requirements and
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architectures [9]. For example, issues of non-functional constraints and their reali-

zation by appropriate architecture middleware choices [4] and the economics of

evolving requirements on architectural decisions [5]. The above emerging issues

will further compound these challenges. This final section of our book contains

three very interesting chapters addressing different areas of these emerging issues

of relating software requirements and architectures.

Chapter 18 by Outi R€aih€a, Hadaytullah, Kai Koskimies and Erkki M€akinen
looks at a new approach to generating candidate software architectures for a system

based on a set of requirements models. One can think of this as a form of “model

driven engineering” where the model is a set of requirements for a software system

and the output a candidate architecture for it. A genetic algorithm is used to produce

the architecture working from an initial simplistic model and refining the model

using fitness functions. These evaluate candidates produced by the genetic algo-

rithm including such measures as simplicity, efficiency and modifiability. Their

approach then produces a proposal for a new software architecture for the specified

target system. The candidate architecture makes use of various architectural

styles and patterns to constrain the result. They study the quality of the candidate

architectures by comparing the generated solutions to ones produced by undergrad-

uate students. The results of these comparisons are very interesting!

Chapter 19 by Eoin Woods and Nick Rozanski describes how software architec-

ture can be used to frame, constrain and indeed to inspire the requirements of

a system. They observe that historically a system’s requirements and its architecture

have been viewed as having a simple relationship. Typically this was assumed to be

the requirements driving the architecture and the architecture was designed in order

to meet the requirements. They report that in their experience a much more dynamic

relationship exists and indeed must be achieved between these activities. They

present a model that allows the architecture of a system to be used to constrain the

requirements to an achievable set of possibilities, rather than be a “pipe dream” set

of possibly unattainable feature. The architectural characteristics can be used to

frame these requirements making their implications clearer. New requirements may

even be inspired by consideration of a system’s architecture.

Chapter 20 by Rami Bahsoon and Wolfgang Emmerich addresses a very differ-

ent aspect of requirements and architecture relationships, namely economics in the

presence of complex middleware capabilities. They observe that most systems now

adopt some form of middleware technology platform in order to more easily and

reliably achieve many non-functional requirements for a software system, such

as scalability, openness, heterogeneity, availability, reliability and fault-tolerance.

An issue is how to evolve non-functional requirements while being able to analyse

the impact of these changes on software architectures induced by middleware.

Specifically they look at economics and stability implications and the role of

middleware in architecture in achieving non-functional requirements in a software

architecture. They propose a technique to elicit not only current non-functional

requirements for a system but likely evolution of these over the lifetime of the system

and economic impact of these. This then allows choice of appropriate middleware

solutions that will both achieve non-functional requirements when used to realise an
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architecture but balance evolutionary costs. An economics-driven approach using

real options theory is used to inform the selection on middleware to induce software

architectures in relation to the evolving non-functional requirements.

These three chapters include case studies of the techniques and empirical

evaluations of the approaches. As you will see, results are both impressive in

terms of the nature of the emerging issues addressed by these three efforts.
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Chapter 18

Synthesizing Architecture from Requirements:

A Genetic Approach

Outi R€aih€a, Hadaytullah Kundi, Kai Koskimies, and Erkki M€akinen

Abstract The generation of software architecture using genetic algorithms is

studied with architectural styles and patterns as mutations. The main input for the

genetic algorithm is a rudimentary architecture representing the functional decom-

position of the system, obtained as a refinement of use cases. Using a fitness

function tuned for desired weights of simplicity, efficiency and modifiability, the

technique produces a proposal for the software architecture of the target system,

with applications of architectural styles and patterns. The quality of the produced

architectures is studied empirically by comparing these architectures with the ones

produced by undergraduate students.

18.1 Introduction

A fundamental question of computing is: “What can be automated?” [1]. Is soft-

ware architecture design inherently a human activity, sensitive to all human

weaknesses, or could it be automated to a certain degree? Given functional and

quality requirements for a particular system, could it be possible to generate a

reasonable software architecture design for the system automatically, thus avoiding

human pitfalls (like the Golden Hammer syndrome [2])? Besides being interesting

from the viewpoint of understanding the limits of computing and the character of

software architecture, we see answers to these questions relevant from a pragmatic

viewpoint as well. In particular, if it turns out that systems can successfully design

systems, various kinds of software generators can optimize the architecture according

to the application requirements, self-sustaining systems [3] can dynamically improve

their own architecture in changing environments, and architects can be supported by

automated design tools.

A possible approach to automate software architecture design is to mechanize the

human process of architecture design into a tool that selects or proposes architectural

solutions using similar rules as a human would. A good example of this approach is

ArchE, a semi-automated assistant for architecture design [4]: the design knowledge
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is codified as a reasoning framework that is applied to direct the design process.

In this approach, the usefulness of the resulting architecture largely depends on the

intelligence and codified knowledge of the tool. This is a potential weakness as far

as automation is concerned: it is hard to capture sufficient design knowledge in

a reasoning framework, which decreases the automation level.

An alternative approach is not to mechanize the process and rules of architecture

design, but simply give certain criteria for the “goodness” of an architecture, and let

the tool try to come up with an architecture proposal that is as good as possible,

using whatever technique. This approach requires no understanding of the design

process, but on the other hand it requires a characterization of a “good” architecture.

If suitable metrics can be developed for different quality attributes of software

architectures, this approach is more light-weight than the former. In particular, this

approach is more amenable for an automated design process, as it can be presented

essentially as a search problem. We will briefly review some existing work related

to this approach in Sect. 18.3.

In this chapter, we will follow the latter approach. More precisely, we will make

the following assumptions to simplify the research setup. First, we assume that

the architecture synthesizer can rely on a “null architecture” that gives the basic

decomposition of the functionalities into components, but pays no attention to the

quality requirements. We will later show how the null architecture is derived from

use cases. Second, we assume that the architecture is obtained by augmenting the

null architecture with applications of general architectural solutions. Such solutions

are typically architectural styles and design patterns [5]. Third, we assume that

the goodness of an architecture can be inferred by evaluating a representation of the

architecture mechanically against the quality requirements of the system. Each

application of a general solution enhances certain quality attributes of the system,

at the expense of others.

With these assumptions, software architecture design becomes essentially a search

problem: find a combination of applications of the general solutions that satisfies the

quality requirements in an optimal way. However, given multiple quality attributes

and a large number of general solutions, the search space becomes huge for a system

with realistic size. This leads us to the more refined research problem discussed in this

chapter: to what extent could we use meta-heuristic search methods, like genetic

algorithms (GA) [6, 7], to produce a reasonable software architecture automatically

for certain functional and quality requirements?

The third assumption above is perhaps the most controversial. Since there is

no exact definition of a good software architecture, and different persons would

probably in many cases disagree on what is a good architecture, this assumption

means that we can only approximate the evaluation of the goodness. Obviously,

the success of a search method depends on how well we can capture the intuitive

architecture quality in a formula that can be mechanically evaluated.

In this chapter, we consider three quality attributes, modifiability, efficiency, and

simplicity; these correspond roughly to the ISO9126 quality factors changeability,

time behavior and understandability [8], respectively. We base our evaluation of all

these factors on existing software metrics [9], but extend them for modifiability and
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efficiency by exploiting knowledge about the effect of the solutions on these

two quality factors. Optional information given by the designer about certain

functionalities is also taken into account. In addition, the designer can give more

precise modifiability requirements as change scenarios [10], taken into account in

the evaluation of modifiability as well.

Although a number of heuristic search methods could be used here [11], we are

particularly interested in GA for two main reasons. First, the structural solutions

visible in the living species in nature provide an indisputable evidence of the power

of evolution in finding competitive system architectures. Second, crossover can be

naturally interpreted for software architecture, as long as certain consistency rules

are followed. Crossover can be viewed as a situation where two architects provide

alternate designs for a system, and decide to merge their solutions, (hopefully)

taking the best parts of both designs.

This chapter proceeds as follows. Background information on genetic algorithms

and the proposed evolutionary software architecture generation process are discussed

in Sect. 18.2. Existing work related to search-based approaches to software architec-

ture design is briefly reviewed in Sect. 18.3. The GA realization in our approach

is discussed in Sect. 18.4, concretized with an example system. An application of

the technique for the example system is presented in Sect. 18.5, and an empirical

experiment evaluating the quality of the genetically produced software architecture

is discussed in Sect. 18.6. Finally, we conclude with some remarks about the

implications of the results and future directions of our work.

18.2 Background

18.2.1 Genetic Algorithms

Meta-heuristics [12] are commonly used for combinatorial optimization, where the

search space can become especially large. Many practically important problems are

NP-hard, making exact algorithms not feasible. Heuristic search algorithms handle

an optimization problem as a task of finding a “good enough” solution among all

possible solutions to a given problem, while meta-heuristic algorithms are able to

solve even the general class of problems behind the certain problem. A search will

optimally end in a global optimum in a search space, but at the very least it will

give some local optimum, i.e., a solution that is “better” than alternative solutions

nearby. A solution given by a heuristic search algorithm can be taken as a starting

point for further searches or be taken as the final solution, if its quality is considered

high enough.

We have used genetic algorithms, which were invented by John Holland in the

1960s. Holland’s original goal was not to design application specific algorithms, but

rather to formally study the ways of evolution and adaptation in nature and develop

ways to import them into computer science. Holland [6] presents the genetic
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algorithm as an abstraction of biological evolution and gives the theoretical frame-

work for adaptation under the genetic algorithm.

In order to explain genetic algorithms, some biological terminology needs to be

clarified. All living organisms consist of cells, and every cell contains a set of

chromosomes, which are strings of DNA and give the basic information of the

particular organism. A chromosome can be further divided into genes, which in turn
are functional blocks of DNA, each gene representing some particular property of

the organism. Each gene is located at a particular locus of the chromosome. When

reproducing, crossover occurs and genes are exchanged between the pair of parent

chromosomes. The offspring is subject to mutation where single bits of DNA are

changed. The fitness of an organism implies the probability that the organism will

live to reproduce and carry on to the next generation [7]. The set of chromosomes at

hand at a given time is called a population.
During the evolution, the population needs to change to fit better the

requirements of the environment. The changing is enabled by mutations and

crossover between different chromosomes (i.e., individuals), and, due to natural

selection, the fittest survive and are able to participate in creating the next

generation.

Genetic algorithms are a way of using the ideas of evolution in computer science

to find a good solution from a very large search space, the goal obviously being that

the found solution is as good as possible. To operate with a genetic algorithm,

one needs an encoding of the solution, i.e., a representation of the solution in a form

that can be interpreted as a chromosome, an initial population, mutation and

crossover operators, a fitness function (to determine the “goodness” of a solution)

and a selection operator for choosing the survivors for the next generation.

In addition, there are also many parameters regarding the GA that need to be

defined and greatly affect the outcome. These parameters are the population size,

number of generations (often used as the terminating condition) and the mutation

and crossover probabilities. Having a large enough population ensures variability

within a generation, and enables a wide selection of different solutions at

every stage of evolution. However, a larger population always means more

fitness evaluations and thus requires more computation time. Similarly, the

more generations the algorithm is allowed to run, the higher the chances are

that it will be able to reach the global optimum. However, again, letting an

algorithm run for, say, 10,000, generations will most probably not be beneficial:

if the operations and parameters have been chosen correctly, a reasonably good

solution should have been found much earlier.

Mutation and crossover probabilities both affect the speed of evolution. If the

probabilities are too high, there is the risk that the application of genetic operations

becomes random instead of guided. Vice versa, if the probabilities are too low there

is the risk that the population will evolve too slowly, and no real diversity will exist.

An assumption to be noted with genetic operators is the building block hypothesis,

which states that a genetic algorithm combines a set of sub-solutions, or building

blocks, to obtain the final solution. The sub-solutions that are kept over the

generations usually have an above-average fitness [13]. The crossover operator is
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especially sensitive to this hypothesis, as an optimal crossover would thus combine

two rather large building blocks in order to produce an offspring.

18.2.2 Overview of Evolutionary Software Architecture
Generation

Software architecture can be understood in different ways. The definitions of

software architecture usually cover the high-level structure of the system, but in

addition to that, often also more process-related aspects like design principles and

rationale of design decisions are included [14, 15]. To facilitate our research, we

adopt a narrow view of software architecture, considering only the static structural

aspect, expressible as a UML (stereotyped) class diagram. In terms of the 4 þ 1

views of software systems [16], this corresponds to a (partial) logical view. While a

similar approach could be applied to generate other views of software architectures

as well, there are some fundamental limitations in using heuristic methods. For

example, it is very difficult to produce the rationale for the design decisions

proposed by a heuristic method.

A central issue in our approach is the representation of the functional and quality

requirements of the system, to be given as input for the genetic synthesis of the

architecture. For expressing functional requirements we need to identify and

express the primary use cases of the system, and refine them into sequence diagrams

depicting the interaction between major components required to accomplish the use

cases. This is a manual task, as the major components have to be decided, typically

based on domain analysis.

In our approach, a so-called null architecture represents a basic functional

decomposition of the system, given as a UML class diagram. No quality

requirements are yet taken into account in the null architecture, although it does

fulfill the functional requirements. The null architecture can be systematically

derived from the use case sequence diagrams: the (classes of the) participants in

the sequence diagram become the classes, the operations of a class are the incoming

call messages of the participants of that class, and the dependency relationships

between the classes are inferred from the call relationships of the participants. This

kind of generation of a class diagram can be automated [17], but in the experiments

discussed here we have done this manually.

Depending on the quality attributes considered, various kinds of information

may need to be associated with the operations of the null architecture. In our study

we consider three quality attributes: simplicity, modifiability, and efficiency. Sim-

plicity is an operation-neutral property in the sense that the characteristics of the

operations have no effect on the evaluation of simplicity. In contrast, modifiability

and efficiency are partially operation-sensitive. For evaluating the modifiability of a

system, it is useful to know which operations are more likely to be affected by

changes than others. Similarly, for evaluating efficiency it is often useful to know
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something about the frequency and resource consumption of the operations. For

example, if an operation that is frequently needed is activated via a message

dispatcher, there is a performance cost because of the increased message traffic.

To allow the evaluation of modifiability and efficiency, the operations can be

annotated with this kind of optional information. If this information is insufficient,

the method may produce less satisfactory results than with the additional informa-

tion. However, no actual “hints” on how the GA should proceed in the design

process are given. The null architecture gives a skeleton for the system and does not

give any finer details regarding the architectures. The information regarding the

operations merely helps in evaluating the solutions but influences in no direct way

the choices of the GA.

The specific quality requirements of a system are represented in two ways. First,

the fitness function used in the GA is basically a weighted sum of the values of

individual quality attributes. By changing the weights the user can emphasize or

downplay some quality attributes, or remove completely certain quality attributes

as requirements. Second, the user can optionally provide more specific quality

requirements using so-called scenarios. The scenario concept is inspired by the

ATAM architecture evaluation method [10], where scenarios are imaginary

situations or sequences of events serving as test cases for the fulfilling of a certain

quality requirement. In principle, scenarios could be used for any quality attribute,

but their formalization is a major research issue outside the scope of this work. Here

we have used only modifiability scenarios, which are fairly easy to formalize. For

example, in our case a scenario could be: “With 50% probability operation T needs

to be realized in different versions that can be changed dynamically.” This is

expressed for the GA tool using a simple formal convention covering most usual

types of change scenario contents.

Figure 18.1 depicts the overall synthesis process. The functional requirements

are expressed as use cases, which are refined into sequence diagrams. This is done

manually by exploiting knowledge of the major logical domain entities having

functional responsibilities. The null architecture, a class diagram, is derived mechani-

cally from the sequence diagrams. The quality requirements are encoded for the GA

as a fitness function, which is used to evaluate the produced architectures. Weights

can be given as parameters to emphasize certain quality attributes, and scenarios can

be used for more specific quality (modifiability) requirements. When the evolution

begins, the null architecture is used by the GA to first create an initial population of

architectures and then, after generations of evolution, the final architecture proposal is

presented as the best individual of the last generation. New generations are produced

by applying a fixed library of standard architectural solutions (styles, patterns, etc.) as

mutations, and crossover operations to combine architectures. The probabilities of

mutations and crossover can be given as parameters as well. The GA part is discussed

in more detail in Sect. 18.4.

The influence of human input is present in defining the use cases which lead to

the null architecture and in giving the parameters for the GA. The use cases must be

defined manually, as they depict the functional requirements of a system: automati-

cally deciding what a system is needed for is not sensible. Giving the parameters for
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the GA, in turn, is necessary for the algorithm to operate. It is possible to leave

everything for the algorithm, and give each mutation the same probability and each

part of the fitness function the same weight. In this case, the GA will not favor any

design choice or quality aspect over another. If, however, the human architect has

a vision that certain design solutions would be more beneficial for a certain type of

system or feels that one quality aspect is more important than some other, it is

possible to take these into account when defining the parameters.

Thus, the human restricts the GA in terms of defining the system functionality

and guides the GA in terms of defining parameters. Additionally, the GA is

restricted by the solution base. The human can influence the solution base by

“removing solutions,” that is, by giving them probability 0, and thus making it

impossible for the GA to use them. But in any case the GA cannot move beyond the

solution base: if a pattern is not defined in the solution base, it cannot be used, and

thus the design choices are limited to those that can be achieved as a combination

of the specified solutions. Currently the patterns must be added to the solution base

by manual coding.

18.3 Related Work

Search-based software engineering applies meta-heuristic search techniques to

software engineering issues that can be modeled as optimization problems.

A comprehensive survey of applications in search-based software engineering has

been made by Harman et al. [18]. Recently, there has been increasing interest in

Genetic
architecture
synthesis

Quality
requirements

Software
architecture

Null
architecture

Solution
base

Refined use 
cases

Functional
requirements

Subfitness 
weights, 
scenarios fitness

mutations

initial population

result

Fig. 18.1 Evolutionary architecture generation
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software design in the field of search-based software engineering. A survey on this

subfield has been conducted by R€aih€a [19]. In the following, we briefly discuss the

most prominent studies in the field of search-based software design.

Bowman et al. [20] study the use of a multi-objective genetic algorithm

(MOGA) in solving the class responsibility assignment problem. The objective is

to optimize the class structure of a system through the placement of methods and

attributes within given constraints. So far they do not demonstrate assigning

methods and attributes “from scratch” (based on, e.g., use cases), but try to find

out whether the presented MOGA can fix the structure if it has been modified.

Simons and Parmee [21, 22] take use cases as the starting point for system

specification. Data is assigned to attributes and actions to methods, and a set of uses

is defined between the two sets. The notion of class is used to group methods and

attributes. This approach starts with pure requirements and leaves all designing to

the genetic algorithm. The genetic algorithm works by changing the allocation of

attributes and methods.

Our work differs from those of Bowman et al. [20] and Simons and Parmee

[21, 22] by operating on a higher level. The aforementioned studies concentrate

only on class-level structure, and single methods and attributes. Bowman et al. [20]

also do not present a method for straightforward design, but are only at the level

where the algorithm can correct a set of errors introduced for testing purposes.

Simons and Parmee [21, 22] do start from roughly the same level as we do

(requirements derived from use cases), but they consider only the assignment of

methods and attributes to classes.

Amoui et al. [23] use the GA approach to improve the reusability of software by

applying architecture design patterns to a UML model. The authors’ goal is to find

the best sequence of transformations, i.e., pattern implementations. Used patterns

come from the collection presented by Gamma et al. [24]. From the software design

perspective, the transformed design of the best chromosomes are evolved so that

abstract packages become more abstract and concrete packages in turn become

more concrete. When compared to our work, this approach only uses one quality

factor (reusability) instead of several contradicting quality attributes. Further, the

starting point in this approach is an existing architecture that is more elaborated

than our null architecture.

Seng et al. [25] describe a methodology that computes a subsystem decomposi-

tion that can be used as a basis for maintenance tasks by optimizing metrics and

heuristics of good subsystem design. GA is used for automatic decomposition. If

a desired architecture is given, and there are several violations, this approach

attempts to determine another decomposition that complies with the given archi-

tecture by moving classes around. Seng et al. [26] have continued their work by

searching for a list of refactorings, which deal with the placement of methods and

attributes and inheritance hierarchy.

O’Keeffe and Ó Cinnéide [27] have developed a tool for improving a design

with respect to a conflicting set of goals. The tool restructures a class hierarchy and

moves methods within it in order to minimize method rejection, eliminate code

duplication and ensure superclasses are abstract when appropriate. Contrary to most
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other approaches, this tool uses simulated annealing. O’Keeffe and Ó Cinnéide

[28, 29] have continued their research by constructing a tool for refactoring object-

oriented programs to conform more closely to a given design quality model. This

tool can be configured to operate using various subsets of its available automated

refactorings, various search techniques, and various evaluation functions based on

combinations of established metrics.

Seng et al. [25, 26] and O’Keeffe and Ó Cinnéide [27–29] make more substantial

design modifications than, e.g., Simons and Parmee [21, 22], and are thus closer to

our level of abstraction, but they work clearly from the re-engineering point of view,

as a well designed architecture is needed as a starting point. Also, modifications to

class hierarchies and structures are still at a lower abstraction level than the design

patterns and styles we use, as we need to consider larger parts of the system (or even

the whole system). The metrics used by Seng et al. [25, 26] and O’Keeffe and

Ó Cinnéide are also simpler, as they directly calculate, e.g., the number of methods

per class or the levels of abstraction.

Mancoridis et al. [30] have created the Bunch tool for automatic modularization.

Bunch uses hill climbing and GA to aid its clustering algorithms. A hierarchical

view of the system organization is created based on the components and relation-

ships that exist in the source code. The system modules and the module-level

relationships are represented as a module dependency graph (MDG). The goal of

the software modularization process is to automatically partition the components of

a system into clusters (subsystems) so that the resultant organization concurrently

minimizes inter-connectivity while maximizing intra-connectivity.

Di Penta et al. [31] build on these results and present a software renovation

framework (SRF) which covers several aspects of software renovation, such as

removing unused objects and code clones, and refactoring existing libraries into

smaller ones. Refactoring has been implemented in the SRF using a hybrid

approach based on hierarchical clustering, GAs and hill climbing, and it also

takes into account the developer’s feedback. Most of the SRF activities deal with

analyzing dependencies among software artifacts, which can be represented with a

dependency graph.

The studies byMancoridis et al. [30] and Di Penta et al. [31] again differ from ours

on the direction of design, as they concentrate on re-engineering, and do not aim to

produce an architecture from requirements. Also they operate on different design

levels: clustering in the case of Mancoridis et al. [30] is on a higher abstraction level,

while, e.g., removing code clones in the case of Di Penta et al.’s [31] study is on

a much more detailed level than our work.

In the self-adaptation approach presented by Menascé et al. [32], an existing

SOA based system is adapted to a changing environment by inserting fault-tolerance

and load balancing patterns into the architecture at run time. The new adapted

architecture is found by a hill climbing algorithm. This work is close to ours in the

use of architecture-level patterns and heuristic search, but this approach – as other

self-adaptation approaches – use specific run-time information as the basis of archi-

tectural transformations, whereas we aim at synthesizing the architecture based on

requirements.
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To summarize, most of the approaches discussed above are different from ours

in terms of the level of detail and overall aim: we are especially interested to shape

the overall architecture genetically, while the works discussed above consider the

problem of improving an existing architecture in terms of fairly fine-grained

mechanisms.

18.4 Realizing Genetic Algorithms for Software

Architecture Generation

18.4.1 Representing Architecture

The genetic algorithm makes use of two kinds of information regarding each

operation appearing in the null architecture. First, the basic input contains the call

relationships of the operations taken from the sequence diagrams, as well as other

attributes like estimated parameter size, frequency and variability sensitiveness,

and the null architecture class it is initially placed in. Second, the information gives

the position of the operation with respect to other structures: the interface it

implements and the design patterns [24] and styles [33] it is a part of. The latter

data is produced by the genetic algorithm.

We will discuss the patterns used in this work in Sect. 18.4.2. The message

dispatcher architecture style is encoded by recording the message dispatcher the

operation uses and the responsibilities it communicates with through the dispatcher.

Other patterns are encoded as instances that contain all relevant information regard-

ing the pattern: operations involved, classes and interfaces involved, and whether

additional classes are needed for the pattern (as in the case of Façade, Mediator

and Adapter). All this data regarding an operation is encoded as a supergene.

An example of a supergene representing one operation is given in Fig. 18.2.

The chromosome handled by the genetic algorithm is gained by collecting the

supergenes, i.e., all data regarding all operations, thus representing a whole view

of the architecture. The null architecture is automatically encoded into the chromo-

some format on the basis of the sequence diagrams. An example of a chromosome

is presented in Fig. 18.3. A more detailed specification of the architecture represen-

tation is given by R€aih€a et al. [34, 35].

calls name type frequency
parameter

size
variation class interface dispatcher

dispatcher
communications

component
class pattern

Fig. 18.2 A supergene for operation

sg1 sg2 …. sgn-1 sgn

Fig. 18.3 Chromosome for a system with n operations (and n supergenes)
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The initial population is generated by first encoding the null architecture into

the chromosome form and creating the desired number of individuals. A random

pattern is then inserted into each individual (in a randomly selected place). In

addition, a special individual is left in the population where no pattern is initially

inserted; this ensures versatility in the population.

18.4.2 Mutations and Crossover

As discussed above, the actual design is made by adding patterns to the architecture.

The patterns have been chosen so that there are very high-level architectural styles

(message dispatcher and client-server), medium-level design patterns (Façade and

Mediator), and low-level design patterns (Strategy, Adapter and Template Method).

The particular patterns were chosen also because they mostly deal with structure

and need very little or no information of the semantics of the operations involved.

The mutations are implemented in pairs of introducing a specific pattern or remov-

ing it. The dispatcher architecture style makes a small exception to this rule: the

actual dispatcher must first be introduced to the system, after which the components

can communicate through it.

Preconditions are used to check that a pattern is applicable. If, for example, the

“add Strategy”-mutation is chosen for operation oi, it is checked that oi is called by
some other operation in the same class c and that it is not a part of another pattern

already (pattern field is empty). Then, a Strategy pattern instance spi is created.

It contains information of the new class(es) sci where the different version(s) of the
operation are placed, and the common interface sii they implement. It also contains

information of all the classes and operations that are dependent on oi, and thus use

the Strategy interface. Then, the value in the class field in the supergene sgi
(representing oi) would be changed from c to sci, the interface field would be

given value sii and the pattern field the value spi. Adding other patterns is done

similarly. Removing a pattern is done in reverse: the operation placed in a “pattern

class” would be returned to its original null architecture class, and the pattern

found in the supergene’s pattern field would be deleted, as well as any classes

and interfaces related to it.

The crossover is implemented as a traditional one-point crossover. That is, given

chromosomes ch1 and ch2 that are selected for breeding, a crossover point p is first

chosen at random, so that 0 < p< n, if the system has n operations. The supergenes
sg1. . .sgp from chromosome ch1 and supergenes sgp+1. . . sgn from ch2will form one

child, and supergenes sg1. . .sgp from chromosome ch2 and supergenes sgp+1. . . sgn
from ch1 another child.

A corrective function is added to ensure that the architectures stay coherent,

as patterns may be broken by overlapping mutations. In addition to ensuring that

the patterns present in the system stay coherent and “legal,” the corrective function

also checks that no anomalies are brought to the design, such as interfaces without

any users.
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Also the mutation points are selected randomly. However, we have taken

advantage of the variability property of operations with the Strategy, Adapter and

dispatcher communication mutations. The chances of a gene being subjected to

these mutations increase with respect to the variability value of the corresponding

operation. This should favor highly variable operations.

The actual mutation probabilities are given as input. Selecting the mutation is

made with a “roulette wheel” selection [36], where the size of each slice of the

wheel is in proportion to the given probability of the respective mutation. Null

mutation and crossover are also included in the wheel. The crossover probability

increases linearly in relation to the fitness rank of an individual, which causes the

probabilities of mutations to decrease in order to fit the larger crossover slice to the

wheel. Also, after crossover, the parents are kept in the population for selection.

These actions favor strong individuals to be kept intact through generations. Each

individual has a chance of reproducing in each generation: if the first roulette

selection lands on a mutation, another selection is performed after the mutation

has been administered. If the second selection lands on the crossover slice, the

individual may produce offspring. In any other case, the second selection is not

taken into account, i.e., the individual is not mutated twice.

18.4.3 Fitness Function

The fitness function needs to produce a numerical value, and is thus composed of

software metrics [37, 38]. The metrics introduced by Chidamber and Kemerer [9]

have especially been used as a starting point for the fitness function, and have been

further developed and grouped to achieve clear “sub-functions” for modifiability

and efficiency, both of which are measured with a set of positive and negative

metrics. The most significant modifications to the basic metrics include taking

into account the positive effect of interfaces and the dispatcher and client-server

architecture styles in terms of modifiability, as well as the negative effect of the

dispatcher and server in terms of efficiency. A simplicity metric is added to penalize

having many classes and interfaces.

Dividing the fitness function into sub-functions gives the possibility to empha-

size certain quality attributes and downplay others by assigning different weights

for different sub-functions. These weights are set by the human user in order to

guide the GA in case one quality aspect is considered more favorable than some

other. Denoting the weight for the respective sub-function sfi with wi, the core

fitness function fc(x) for architecture x can be expressed as

fc xð Þ ¼ w1
�sf1 � w2

�sf2 þ w3
�sf3 � w4

�sf4 � w5
�sf5:

Here, sf1 measures positive modifiability, sf2 negative modifiability, sf3 positive
efficiency, sf4 negative efficiency and sf5 complexity. The sub-fitness functions are

defined as follows (|X| denotes the cardinality of X):
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sf1 ¼ |interface implementers| þ |calls to interfaces| þ |calls to server| þ |calls

through dispatcher| * ∏ (variabilities of operations called through dispatcher)

– |unused operations in interfaces| * a,
sf2 ¼ |direct calls between operations in different classes|,

sf3 ¼ ∑ (|operations dependent of each other within same class| * parameterSize)

þ ∑ (|usedOperations in same class| * parameterSize þ |dependingOperations

in same class| * parameterSize),

sf4 ¼ ∑ ClassInstabilities [23] þ (|dispatcherCalls| þ |serverCalls|) *∑ frequencies,

sf5 ¼ |classes| þ |interfaces|.

The multiplier a in sf1 emphasizes that having unused responsibilities in an

interface should be more heavily penalized. In sf3, “usedOperations in same class”

means the set of operations oi. . .ol in class C, which are all used by the same

operation om from class D. Similarly, “dependingOperations in same class” means

the set of operations ob. . .oh in classK, which all use the same operation oa in class L.
It should be emphasized that all these sub-functions calculate a numerical fitness

value for the entire system, and do not reward or penalize any specific patterns

(apart from dispatcher connections). This fitness value is the basis of the evaluation,

and weights are simply used to guide the algorithm, if needed. Each weight can be

set to 1, in which case all sub-fitnesses are considered equally important, and

the fitness value is the raw numerical value produced by the fitness calculations.

All sub-fitnesses are normalized so that their values are in the same range.

Additionally, scenarios can be used for more detailed fitness calculations.

Basically, a scenario describes an interaction between a stakeholder and the system

[39]. In our approach we have concentrated only on change scenarios. We have

categorized each scenario in three ways: is the system changed or is something

added; if changed, does the change concern semantics or implementation of the

operation, and whether the modification should be done dynamically or statically.

This categorization is the basis for encoding the scenarios. In addition, each

encoding of a scenario contains information of the operation it affects, and the

probability of the scenario occurrence. R€aih€a et al. [40] explain the scenario

encoding in more detail.

Each scenario type is given a list of preferences according to the general

guidelines of what is a preferable way to deal with that particular type of modifica-

tion. These preferences are general, and do not in any way consider the specific

needs or properties of the given system.

When scenarios are encoded, the algorithm processes the list of given scenarios,

and compares the solution for each scenario to the list of preferences. Each solution

is then awarded points according to how well it supports the scenarios, i.e., how

high the partial solutions regarding individual operations are on the preference list.

Formally, the scenario sub-fitness function sfs can be expressed as

sfs ¼
X

scenarioProbability � 100 scenarioPreference= :

Adding the scenario sub-fitness function to the core fitness function results in

the overall fitness, f xð Þ ¼ fc xð Þ þ ws � sfs:
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18.5 Application

18.5.1 Creating Input

As an example system, we will use the control system for a computerized home,

called ehome. Use cases for this system are assumed to consist of logging in,

changing the room temperature, changing the unit of temperature, making coffee,

moving drapes, and playing music. In Fig. 18.4, the coffee making use case has

been refined into a sequence diagram.

Since we are here focusing on the architecture of the actual control system, we

ignore user interface issues and follow a simple convention that the user interface is

represented by a single (subsystem) participant that can receive use case requests.

Accordingly, in the null architecture the user interface is in this example repre-

sented by a single component that has the use cases as operations.

To refine this use case, we observe that we need further components. The main

unit for controlling the coffee machine is introduced as CoffeeManager; addition-

ally, there is a separate component for managing water, WaterManager. If a

component has a significant state or it manages a significant data entity (like, say,

a data base), this is added to the participant box. In this case, CoffeeManager and

WaterManager are assumed to have significant state information.

The null architecture in Fig. 18.5 (made by hand in this study) for the ehome

system can be mechanically derived from the use case sequence diagrams. The

null architecture only contains use relationships, as no more detail is given for the

algorithm at this point. The null architecture represents the basic functional decom-

position of the system.

Fig. 18.4 Make coffee use case refined
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Fig. 18.5 Null architecture for ehome
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After the operations are derived from the use cases, some properties of the

operations can be estimated to support the genetic synthesis, regarding the amount

of data an operation needs, frequency of calls, and sensitiveness for variation.

For example, it is likely that the coffee machine status can be shown in several

different ways, and thus it is more sensitive to variation than ringing the buzzer

when the coffee is done. Measuring the position of drapes requires more infor-

mation than running the drape motor, and playing music quite likely has a higher

frequency than changing the password for the system. Relative values for the

chosen properties can similarly be estimated for all operations. This optional

information, together with operation call dependencies, is included in the infor-

mation subjected to encoding.

Finally, different stakeholders’ viewpoints are considered regarding how the

system might evolve in the future, and modifiability scenarios are formulated

accordingly. For example, change scenarios for the ehome system include:

• The user should be able to change the way the music list is showed (90%)

• The developer should be able to change the way water is connected to the coffee

machine (50%)

• The developer should be able to add another way of showing the coffee machine

status (60%).

A total of 15 scenarios were given for the ehome system.

18.5.2 Experiment

In our experiment, we used a population of 100 and 250 generations. The fitness

curve presented is an average of 10 test runs, where the actual y-value is the average

of 10 best individuals in a given population. The weights and probabilities for the

tests were chosen based on previous experiments [34, 35, 40].

We first set all the weights to 1, i.e., did not favor any quality factor over another.

The architecture achieved this way was quite simple. There were fairly well-placed

instances of all low-level patterns (Adapter, Template Method and Strategy), and the

client-server architecture style was also applied. Strikingly, however, the message

dispatcher was not used as the general style, which we would have expected for this

type of system. Consequently, we calibrated the weights by emphasizing positive

modifiability over other quality attributes. Simultaneously negative efficiency was

given a smaller than usual weight, to indicate that possible performance penalty of

solutions increasing modifiability is not crucial. The fitness curve for this experiment

is given in Fig. 18.6. As can be seen, the fitness curve develops steadily, and most

improvement takes place between 1 and 100 generations, which is expected, as the

architecture is still simple enough that applying the different mutations is easy.

An example solution with increased modifiability weight is depicted in Fig. 18.7.

Now, the dispatcher architecture style is present, and there are also more Strategy

patterns than in the solution where all quality factors were equally weighted. This is

a natural consequence of the weighting: the dispatcher has a significant positive

322 O. R€aih€a et al.



www.manaraa.com

effect on modifiability, and since it is not punished too much for inefficiency, it

is fairly heavily used as a communication pattern. The same applies to Strategy,

although in smaller scale.

18.6 Empirical Study on the Quality of Synthesized

Architectures

As shown in the previous section, genetic software architecture synthesis appears

to be able to produce reasonable architecture proposals, although obviously they

still need some human polishing. However, since the method is not deterministic,

it is essential to understand what is the goodness distribution of the proposals, that

is, to what extent the architect can rely on the quality of the generated architecture.

To study this, we carried out an experiment where we wanted to relate the quality of

the generated architectures to the quality of the architectures produced by students.

The setup and results of this experiment are discussed in the sequel.

18.6.1 Setup

18.6.1.1 Producing Architectures

First, a group of 38 students from an undergraduate software engineering class was

asked to produce an architecture design for the ehome system. Most of the students

Ehome, modifiability weighted
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Fig. 18.6 Fitness development, modifiability weighted
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were third year Software Systems majors from Tampere University of Technology,

having participated in a course on software architectures.

The students were given essentially the same information that is used as input for

the GA, that is, the null architecture, the scenarios, and information about the expected

frequencies of operations. In addition, students were given a brief explanation of

the purpose and functionality of the system. They were asked to design the architec-

ture for the system, using only the same architecture styles (message dispatcher and

Fig. 18.7 Example architecture for ehome when modifiability is weighted over other quality

factors
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client-server) and design patterns (Façade, Mediator, Strategy, Adapter, Template

Method) that were available for GA. The students were instructed to consider effi-

ciency, modifiability and simplicity in their designs, with an emphasis on modifia-

bility. It took 90 min in the average for the students to produce a design.

In this experiment we wanted to evaluate genetically synthesized solutions

against the student solutions in pairs. The synthesized solutions were achieved in

38 runs, out of which ten runs were randomly selected, resulting in ten architecture

proposals. Each run took approximately 1 min (i.e., it took 1 min for the synthesizer

to produce one solution). The setup for the synthesized architectures was the same

as in the example given in Sect. 18.5.

18.6.1.2 Evaluating Architectures

After the students had returned their designs, the assistant teacher for the course

(impartial to the GA research) was asked to grade the designs as test answers on a

scale of 1–5, five being the highest. The solutions were then categorized according

to the points they achieved. From the categories of 1, 3 and 5, one solution for each

category was randomly selected. These architectures were presented as grading

examples to four software engineering experts. The experts were researchers and

teachers at the Department of Software Systems at Tampere University of Technol-

ogy. They all had a M.Sc. or a Ph.D. degree in Software Systems or in a closely

related discipline and several years of expertise from software architectures, gained

by research or teaching.

In the actual experiment, the experts were given ten pairs of architectures. One

solution in each pair was a student solution, selected randomly from the set of

student solutions, and one was a synthesized solution. The solutions were edited in

such a way that it was not possible for the experts to know which solution was

synthesized. The experts were then asked to give each solution 1, 3 or 5 points.

They were given the same information as the students regarding the requirements.

The experts were not told how the solutions were achieved, i.e., that they were

a combination of student and synthesized solutions. They were merely asked to help

in evaluating how good solutions a synthesizer could make.

18.6.2 Results

The scores given by the experts (e1 � e4) to all the automatically synthesized

architectures (a1 � a10) and architectures produced manually by the students

(m1 � m10) are shown in Table 18.1. The points in Table 18.1 are organized so

that the points given to the synthesized and human-made solutions of the same pair

(ai, mi) are put next to each others so the pairwise points are easily seen. The result

of each comparison is one of the following

18 Synthesizing Architecture from Requirements: A Genetic Approach 325



www.manaraa.com

• The synthesized solution is considered better (ai > mi, denoted later by +)

• The human-made solution is considered better (mi > ai , denoted later by �), or

• The solutions are considered equal (ai ¼ mi, denoted latter by 0).

By doing so, we lose some information because one of the solutions is consid-

ered simply “better” even in the situation when it receives 5 points while the other

receives 1 point. As can be seen in Table 18.1, this happens totally six times. In five

of these six cases the synthesized solution is considered clearly better than the

human-made solution, and only once vice versa. As our goal is to show that the

synthesized solutions are at least as good as the human-made solutions, this lost of

information does not bias the results.

The best synthesized solutions appear to be a3 and a10, with two 3’s and two 5’s.

In solution a3 the message dispatcher was used, and there were quite few patterns,

so the design seemed easily understandable while still being modifiable. However,

a10 was quite the opposite: the message dispatcher was not used, and there were

especially as many as eight instances of the Strategy pattern, when a3 had only two.

There were also several Template Method and Adapter pattern instances. In this

case the solution was highly modifiable, but not nearly as good in terms of

simplicity. This demonstrates how very different solutions can be highly valued

with the same evaluation criteria, when the criteria are conflicting: it is impossible

to achieve a solution that is at the same time optimally efficient, modifiable and still

understandable.

The worst synthesized solution was considered to be a4, with three 1’s and one 3.

This solution used the message dispatcher but also the client-server style was

eagerly applied. There were not very many patterns, and the ones that existed

were quite poorly applied. Among the human-made solutions, there were three

equally scored solutions (m5, m8, and m10).

Table 18.2 shows the numbers of the preferences of the experts, with “+” indicating

that the synthesized proposal was considered better than the student proposal, “�”

indicating the opposite, and “0” indicating a tie. Only one (e1) of the four experts

preferred the human-made solutions slightlymore often than the synthesized solution,

while two experts (e2 and e4) preferred the synthesized solutions clearly more often

than the human-made solutions. The fourth expert (e3) preferred both types of solu-

tions equally. There were totally 17 pairs of solutions with better score for the

synthesized solution, nine pairs preferring the human-made solution, and 14 ties.

The above crude analysis clearly indicates that in our simple experiment, the

synthesized solutions were ranked at least as high as student-made solutions. In

order to get more exact information about the preferences and finding confirmation

Table 18.1 Points for synthesized solutions and solutions produced by the students

a1 m1 a2 m2 a3 m3 a4 m4 a5 m5 a6 m6 a7 m7 a8 m8 a9 m9 a10 m10

e1 3 3 1 3 5 3 1 5 3 1 1 3 3 3 5 3 3 5 3 3

e2 5 1 3 3 5 1 1 1 3 3 3 5 1 1 3 1 1 1 5 1

e3 3 3 3 5 3 3 1 3 3 1 3 1 1 3 1 1 3 3 3 1

e4 3 1 5 3 3 5 3 1 5 1 5 3 3 3 3 1 3 3 5 1
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even for the hypothesis that the synthesized solutions are significantly better

than student-made solutions, it would be possible to use an appropriate statistical

test (e.g., counting the Kendall coefficient of agreement). However, we omit such

studies due to the small number of both experts and architecture proposals consid-

ered. At this stage, it is enough to notice that the synthesized solutions are

competitive with those produced by third year software engineering students.

18.6.3 Threats and Limitations

We acknowledge that there are several threats and limitations in the presented

experiment. Firstly, as the solutions for evaluations were selected randomly out of

all the 38 student (and synthesized) solutions, it is theoretically possible that the

solutions selected for the experiment do not give a true representation of the entire

solution group. However, we argue that as all experts were able to find solutions they

judged worth of 5 points as well as solutions only worth 1 point, and the majority of

solutions were given 3 points, it is unlikely that the solutions subjected to evaluation

would be so biased it would substantially affect the outcome of the experiment.

Secondly, the pairing of solutions could be questioned. A more diverse evalua-

tion could have been if the experts were given the solutions in different pairs (e.g.,

for expert e1 the solution a1 would have been paired with m5 instead of m1). One

might also ask if the outcome would be different with different pairing. We argue

that as the overall points are better for the synthesized solutions, different pairing

would not significantly change the outcome. Also, the experts were not actually told

to evaluate the solutions as pairs – the pairing was simply done in order to ease the

evaluation and analysis processes.

Thirdly, the actual evaluations made by the experts should be considered.

Naturally, having more experts would have strengthened the results. However,

the evaluations were quite uniform. There were very few cases where three experts

considered the synthesized solution better or equal to the student solution (or the

student solution better or equal to the synthesized one) and the fourth evaluation

was completely contradicting. In fact, there were only three cases where such

contradiction occurred (pairs 2, 3 and 4), and the contradicting expert was always

the same (e4). Thus we argue that the consensus between experts is sufficiently

good, and increasing the number of evaluations would not substantially alter the

outcome of the experiment in its current form.

Table 18.2 Numbers of

preferences of the experts
+ � 0

e1 3 4 3

e2 4 1 5

e3 3 3 4

e4 7 1 2

Total 17 9 14
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Finally, the task setup was limited in the sense that architecture design was

restricted to a given selection of patterns. Giving such a selection to the students

may both improve the designs (as the students know that these patterns are

potentially applicable) and worsen the designs (due to overuse of the patterns).

Unfortunately, this limitation is due to the genetic synthesizer in its current stage,

and could not be avoided.

18.7 Conclusions

We have presented a method for using genetic algorithms for producing software

architectures, given a certain representation of functional and quality requirements.

We have focused on three quality attributes: modifiability, efficiency and simpli-

city. The approach is evaluated with an empirical study, where the produced

architectures were given for evaluation to experts alongside with student solutions

for the same design problem.

The empirical study suggests that, with the assumptions given in Sect. 18.1, it is

possible to synthesize software architectures that are roughly at the level of an

undergraduate student. In addition to the automation aspect, major strengths of

the presented approach are the versatility and options for expansion. Theoretically,

an unlimited amount of patterns can be used in the solution library, while a human

designer typically considers only a fairly limited set of standard solutions. The

genetic synthesis is also not tied to prejudices, and is able to produce fresh, unbiased

solutions that a human architect might not even think of. On the other hand, the

current research setup and experiments are still quite limited. Obviously, the

relatively simple architecture design task given in the experiment is still far from

real-life software architecture design, with all its complications.

The main challenge in this approach is the specification of the fitness function.

As it turned out in the experiment, even experts can disagree on what is a good

architecture. Obviously, the fitness function can only approximate the idea of archi-

tectural quality. Also, tuning the parameters (fitness weights and mutation proba-

bilities) is nontrivial and may require calibration for a particular type of a system. To

alleviate the problem of tuning the weights of different quality attributes, we are

currently exploring the use of Pareto optimality [41] to producemultiple architecture

proposals with different emphasis of the quality attributes, instead of a single one.

In the future we will focus on potential applications of genetic software archi-

tecture synthesis. A particularly attractive application field of this technology is

self-adapting systems (e.g., Cheng et al. [42]), where systems are really expected

to “redesign” themselves without human interaction. Self-adaptation is required

particularly in systems that are hard to maintain in a traditional way, like constantly

running embedded systems or highly distributed web systems. We see the genetic

technique proposed in this paper as a promising approach to give systems the ability

to reconsider their architectural solutions based on some changes in their require-

ments or environment.
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Chapter 19

How Software Architecture can Frame,

Constrain and Inspire System Requirements

Eoin Woods and Nick Rozanski

Abstract Historically a system’s requirements and its architectural design have

been viewed as having a simple relationship where the requirements drove the

architecture and the architecture was designed in order to meet the requirements. In

contrast, our experience is that a much more dynamic relationship can be achieved

between these key activities within the system design lifecycle, that allows

the architecture to constrain the requirements to an achievable set of possibilities,

frame the requirements making their implications clearer, and inspire new require-

ments from the capabilities of the system’s architecture. In this article, we describe

this relationship, illustrate it with a case study drawn from our experience and

present some lessons learned that we believe will be valuable for other software

architects.

19.1 Introduction

Historically, we have tended to view a system’s requirements and its architectural

design as having a fairly simple relationship; the requirements drove the architec-

ture and the architecture was designed in order to meet the requirements. However

this is a rather linear relationship for two such key elements of the design process

and we have found that it is desirable to strive for a much richer interaction between

them.

This chapter captures the results of our experience in designing systems, through

which we have found that rather than just passively defining a system structure to

meet a set of requirements, it is much more fruitful to use an iterative process that

combines architecture and requirements definition. We have found that this allows

the architectural design to constrain the requirements to an achievable set of

possibilities, frame the requirements making their implications clearer, and inspire
new requirements from its capabilities.

Our experience has led us to believe that the key to achieving this positive

interplay between requirements and architecture is to focus on resolving the forces

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
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inherent in the underlying business drivers that the system aims to meet. This

process is part of a wider three-way interaction between requirements, architecture

and project management. In this chapter we focus on the interaction between the

requirements and architectural design processes, while touching on the relationship

that both have with project management.

We start by examining the classical relationship between requirements and

architectural design, before moving on to describe how to achieve a richer, more

positive, interaction between requirements and architecture. We then illustrate the

approach with a real case study from the retail sector. In so doing, we hope to show

how architects need to look beyond the requirements that they are given and work

creatively and collaboratively with requirements analysts and project managers in

order to meet the system’s business goals in the most effective way.

In this work, we focus on the architecture and requirements of information
systems, as opposed to real-time or embedded systems. We have done this because

that is the area in which we have both gained our architectural experience and

applied the techniques we describe in the case study.

19.2 Requirements Versus Architecture

While both are very familiar concepts, given the number of interpretations that exist

of the terms “system requirements” and “software architecture” it is worth briefly

defining both in order to clearly set the scene for our discussion.

To avoid confusion over basic definitions, we use widely accepted standard

definitions of both concepts, and they serve our purposes perfectly well.

Following the lead of the IEEE [7] we define systems requirements as being “(1)
a condition or capability needed by a user to solve a problem or achieve an
objective; (2) a condition or capability that must be met or possessed by a system
or system component to satisfy a contract, standard, specification, or other formally
imposed document; or a documented representation of a condition or capability as
in (1) or (2).”

For software architecture, we use the standard definition from the ISO 42010

standard [8], which is “the fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution.”

So for the purposes of our discussion we view requirements as being the

definition of the capabilities that the system must deliver, and the architecture

of the system being its structure and organization that should allow the system to

provide the capabilities described by its requirements.

Gathering requirements is a complicated, subtle and varied task and for large

systems the primary responsibility for this usually lies with a specialist require-

ments analyst (or “requirements engineer” depending on the domain and termino-

logy in force). The task is usually divided into understanding the functions that the
system must provide (its functional requirements) and the qualities that it must
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exhibit while providing them (its non-functional requirements, such as security,

scalability, usability and so on). There are many approaches for gathering

requirements and the output of requirements-gathering activities varies widely

[6, 17]. However, in our experience, requirements can be defined via formal

written textual paragraphs, descriptions of scenarios that the system must be able

to cope with, descriptions of typical usage of the system by one of its users, tables

of measurements and limits that the system must meet or provide, user interface

mock ups or descriptions, verbal discussions between individuals and so on.

In reality the requirements of the system are usually found in a combination of

sources –in, across and between the different requirements artefacts available.

For a large system, the design of the system’s key implementation structures

(its “architecture”) is also a complicated and multi-faceted activity. It usually

involves the design of a number of different but closely related aspects of the

system including component structure, responsibility and interaction, concurrency

design, information structure and flow, deployment approach and so on. One of

the major difficulties with representing a system’s architecture is this multi-faceted

nature, and in response to this, most architectural description approaches today are

based on the idea of using multiple views, each capturing a different aspect of

the architecture [4, 11, 19]. Hence the output of an architectural design exercise is

usually a set of views of the system, with supporting information explaining how

architecture allows the system to meet its key requirements, particularly its non-

functional requirements (or quality properties as they are often known).

Finally, it is worth drawing a distinction between both the requirements and

architecture of the system and their documented representations. In informal

discussion we often merge the two concepts and refer to “requirements” to mean

both the actual capabilities that the system must provide and the written form that

we capture them in. Even more likely is confusion as to whether the term “the

architecture” refers to the actual architecture of the system or the architectural

documentation that explains it. In both cases, we would point out (as we and

others have elsewhere, such as [2]) that whether or not they are clearly defined

and captured, all systems have requirements and an architecture. We would also

suggest that whether the latter meets the needs of the former is one of the significant

determinants of the success for most systems. For this discussion, we focus on the

real-world processes for requirements capture, architecture design and the interplay

between them.

19.3 The Classical Relationship

Recognition of the importance of the relationship between the requirements and the

design of a system is not a recent insight and software development methods have

been relating the two for a long time.

The classical “Waterfall” method for software development [18] places

requirements analysis quite clearly at the start of the development process and

19 How Software Architecture can Frame, Constrain and Inspire System Requirements 335



www.manaraa.com

then proceeds to system design, where design and architecture work would take

place. There is a direct linkage between the activities, with the output of the

requirements analysis processing being a (complete) set of specifications that the

system must meet, which form the input to the design process. The design process is

in turn a problem-solving activity to identify a complete design for the system that

will allow it to meet that specification. The waterfall method is not really used in

practice due to its rigidity and the resulting high cost of mistakes (as no validation of

the system can be performed until it is all complete) but it does form a kind of cultural

backdrop upon which other more sophisticated approaches are layered and compared.

From our current perspective, the interesting thing about the waterfall approach is that

although primitive, it does recognise the close relationship of requirements analysis

and system architecture. The major limitation of the model is that it is a one-way

relationship with the requirements being fed into the design process as its primary

input, but with no feedback from the design to the requirements.

The well-known “spiral” model of software development [3] is one of the better-

known early attempts at addressing the obvious limitations of the waterfall

approach and has informed a number of later lifecycles such as Rational’s RUP

method [12]. The spiral model recognises that systems cannot be successfully

delivered using a simple set of forward-looking activities but that an iterative

approach, with each iteration of the system involving some requirements analysis,

design, implementation and review, is a much more effective and lower-risk way to

deliver a complicated system. The approach reorganises the waterfall process into a

series of risk-driven, linked iterations (or “spirals”), each of which attempts to

identify and address one or more areas of the system’s design. The spiral model

emphasises early feedback to the development team by way of reviews of all work

products that are at the end of each iteration, including system prototypes that can

be evaluated by the system’s main stakeholders. Fundamentally the spiral model

focuses on managing risk in the development process by ensuring that the main

risks facing the project are addressed in order of priority via an iterative prototyping

process and this approach is used to prioritise and guide all of the system design

activities.

A well-known development of the spiral model is the “Twin Peaks” model of

software development, as defined by Bashar Nuseibeh [15] which attempts to

address some limitations of the spiral model by organising the development process

so that the system’s requirements and the system’s architecture are developed in

parallel. Rather than each iteration defining the requirements and then defining

(or refining) the architecture to meet them, the Twin Peaks model suggests that the

two should be developed alongside each other because “candidate architectures
can constrain designers from meeting particular requirements, and the choice of
requirements can influence the architecture that designers select or develop.”
While the spiral model’s approach to reducing risk is to feedback to the require-

ments process regularly, the Twin Peaks model’s refinement of this is to make the

feedback immediate during the development of the two. By running concurrent,

interlinked requirements and architecture processes in this way the approach aims

to address some particular concerns in the development lifecycle, in particular
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“I will know it when I see it” (users not knowing what their requirements are until

something is built), using large COTS components within systems and rapid

requirements change.

Most recently, the emergence of Agile software development approaches [14] has

provided yet another perspective on the classical relationship between requirements

and design. Agile approaches stress the importance of constant communication,

working closely with the system’s end users (the “on-site customer”) throughout

the development process, and regular delivery of valuable working software to allow

it to be used, its value assessed and for the “velocity” (productivity) of the develop-

ment team to be measured in a simple and tangible way. An important difference to

note between the Agile and spiral approaches is that the spiral model assumes that the

early deliveries will be prototype software whereas an Agile approach encourages the

software to be fully developed for a minimal feature set and delivered to production

and used (so maximising the value that people get from it, as early as possible). In an

agile project, requirements and design artefacts tend to be informal and lightweight,

with short “user stories” taking the place of detailed requirements documentation

and informal (often short-lived) sketches taking the place of more rigorous and

lengthy design documentation. The interplay between requirements and design is

quite informal in the Agile approach, with requirements certainly driving design

choices as in other approaches, and the emphasis being on the design emerging from

the process of adding functions to the system, rather than “upfront” design. Feedback

from the design to the requirements is often implicit: a designer may realize the

difficulty of adding a new feature (and so a major piece of re-design – refactoring – is

required), or spot the ability to extend the system in a new way, given the system’s

potential capabilities, and suggest this to one of the customers who may decide to

write a new “user story.”

In summary, the last 20 years have seen significant advances in the approach

taken to relating requirements and design, with the emphasis on having design work

inform the requirements process as early as possible, rather than leaving this until

the system is nearly complete. However the remaining problem that we see with all

of these approaches is that architecture is implicitly seen as the servant of the

requirements process. Our experience suggests that in fact it is better to treat these

two activities as equal parts of the system definition process, where architecture is

not simply constrained and driven by the system’s requirements but has a more

fundamental role in helping to scope, support and inspire them.

19.4 A Collaborative Relationship for Requirements

and Architecture

We have found that the basis for defining a fruitful relationship between require-

ments and architecture needs to start with a consideration of the business drivers
that cause the project to be undertaken in the first place. We consider the business

drivers to be the underlying external forces acting on the project, and they capture
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the fundamental motivations and rationale for creating the system. Business drivers

answer the fundamental “why” questions that underpin the project: why is devel-

oping the system going to benefit the organization? why has it chosen to focus its

energies and investment in this area rather than elsewhere? what is changing in the

wider environment that makes this system necessary or useful? Requirements

capture and architectural design, on the other hand, tend to answer (in different

ways) the “what” and “how” questions about the system.

It is widely accepted that business drivers provide context, scope and focus for

the requirements process, however we have also found them to be an important

input into architectural design, by allowing design principles to be identified and

justified by reference to them. Of course the requirements are also a key input to

the architectural design, defining the capabilities that the architecture will need

to support, but the business drivers provide another dimension, which helps the

architect to understand the wider goals that the architecture will be expected to

support. These relationships are illustrated by the informal diagram in Fig. 19.1.

Having a shared underlying set of drivers gives the requirements and architec-

ture activities a common context and helps to ensure that the two are compatible

and mutually supportive (after all, if they are both trying to support the same

business drivers then they should be in broad alignment). However, it is important

to understand that while the same set of drivers informs both processes, they may be

used in quite different ways.

Some business drivers will tend to influence the requirements work more directly,

while others will tend to influence architectural design more. For example, in a retail

environment the need to respond to expansion from a single region where the

organisation has a dense footprint of stores into new geographical areas is likely to

have an effect on both the requirements and the architecture. It is clear that such drivers

could lead to new requirements in the area of legislative flexibility, logistics and

distribution, the ability to have multiple concurrent merchandising strategies, infor-

mation availability, scalability with respect to stores and sales etc. However, while

these requirements would certainly influence the architecture, what is maybe less

obvious is that the underlying business driver could directly influence the architecture
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in other ways, such as needing to ensure that the system is able to cope with relatively

high network latency between its components or the need to provide automated and/or

remote management of certain system components (e.g. in-store servers). These

architectural decisions and constraints then in turn influence the requirements that

the system can meet and may also suggest completely new possibilities. For example,

the ability to cope with high network latencies could both limit requirements, perhaps

constraining user interface options, and also open up new possibilities, such as the

ability for stores to be able to operate in offline mode, disconnected from the data

center, while continuing to sell goods and accept payments.

The other non-technical dimension to bear in mind is that this new relationship

between requirements and architecture will also have an effect on the decision-

making in the project. Whereas traditionally, the project manager and requirements

engineer/analyst took many of the decisions with respect to system scope and

function, this now becomes a more creative three-way tension between project

manager, requirements engineer and software architect as illustrated by the infor-

mal diagram in Fig. 19.2.

All three members of the project team are involved in the key decisions for the

project and so there should be a significant amount of detailed interaction between

them. The project manager is particularly interested in the impact of the architect’s

and requirements analyst’s decisions on scope, cost and time, and the requirements

analyst and architect negotiate and challenge each other on the system’s scope,

qualities and the possibilities offered by the emerging architecture.

19.5 The Interplay of Architecture and Requirements

As we said in the previous section, the relationship between requirements and

architecture does not need to be a straightforward flow from requirements

“down” to architecture. Of course, there is a definite flow from the requirements
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analysis activity into the architectural design, and the requirements are one of the

architect’s primary inputs. But rather than being a simple one-way relationship, we

would suggest that it is better to aim for a more intertwined relationship in the spirit

of Twin Peaks, but developing this theme to the point where architecture frames,

constrains and inspires the requirements as both are being developed. So we need to

consider how this process works in more detail.

Bashar Nuseibeh’s “Twin Peaks” model, as shown in Fig. 19.3, shows how the

requirements definition and architectural design activities can be intertwined so

that the two are developed in parallel. This allows the requirements to inform the

architecture as they are gathered and the architecture to guide the requirements

elicitation process as it is developed. The process of requirements analysis informing

architectural design is widely accepted and well understood, as the requirements are a

primary input to the architectural design process and an important part of architec-

tural design is making sure that the requirements can be met. What is of interest to us

here is how the architectural design process influences the requirements-gathering

activity and we have found that there are three main ways in which this influence

manifests itself.

19.5.1 The “Framing” Relationship

Starting with the simplest case, we can consider the situation where the architecture

frames one or more requirements. This can be considered to be the classical case,

where the requirements are identified and defined by the requirements analysis

process and then addressed by the architecture. However, when the two are being

developed in parallel then this has the advantage that the architecture provides
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context and boundaries for the requirements during their development rather than

waiting for them to be completed. Such context provides the requirements analyst

with insights into the difficulty, risk and cost of implementing the requirements and

so helps them to balance these factors against the likely benefits that implementing

the requirement would provide. If this sort of contextual information is not provided

when eliciting requirements for a system then there is the distinct danger that “blue

sky” requirements are specified without any reference to the difficulty of providing

them. When the architecture is developed in parallel with the requirements,

this allows the architect to challenge requirements that would be expensive

to implement. In cases where they are found to be of high value, consider early

modifications or extensions to the system’s architecture to allow them to be

achieved at lower cost or risk.

For example, while a “surface” style user interface might well allow new and

innovative functions to be specified for a system, such devices are relatively imma-

ture, complicated to support, difficult to deploy and expensive to buy, so it would be

reasonable for any requirements that require such interfaces to be challenged on the

grounds of cost effectiveness and technical risk. The architecture doesn’t prevent this

requirement from being met, but investigating its implementation feasibility in

parallel with defining the requirement allows its true costs and risks to be understood.

19.5.2 The “Constraining” Relationship

In other situations, the architect may realize that the implementation of a require-

ment is likely to be very expensive, risky or time-consuming to implement using

any credible architecture that they can identify. In such cases, we say that the

architecture constrains the requirements, forcing the requirements analyst to focus

on addressing the underlying business drivers in a more practical way.

To take an extreme example, while it is certainly true that instant visibility of

totally consistent information across the globe would provide a new set of capabilities

for many systems, it is not possible to achieve this using today’s information systems

technology. It is therefore important that a requirements analyst respects this con-

straint and specifies a set of requirements that do not require such a facility in order to

operate. In this case, understanding the implementation possibilities while the

requirements are being developed allows a requirement to be highlighted as impossi-

ble to meet with a credible architecture, so allowing it to be removed or reworked

early in the process.

19.5.3 The “Inspiring” Relationship

Finally, there are those situations where the architectural design process actually

inspires new aspects of the emerging requirements, or “the solution drives the
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problem” as David Garlan observed [5]. However while Garlan was commenting

on this being possible in the case of product families (where the possible solutions

are already understood from the existing architecture of the product family),

we have also seen this happen when designing new systems from scratch. As

the architecture is developed, both from the requirements and the underlying

business drivers, it is often the case that architectural mechanisms need to be

introduced which can have many potential uses and could support many types

of system function. While they have been introduced to meet one requirement,

there is often no reason why they cannot then also be used to support another,

which perhaps had not been considered by the requirements analyst or the

system’s users.

An example of this is an architectural design decision to deliver the user

interface of the system via a web browser, which might be motivated by business

drivers around geographical location, ease of access or low administrative overhead

for the client devices. However, once this decision has been made, it opens up

a number of new possibilities including user interface layer integration with other

systems (e.g. via portals and mash ups), the delivery of the interface onto a much

wider variety of devices than was previously envisaged (e.g. home computers

as well as organisational ones) and accessing the interface from a wider variety

of locations (e.g. Internet cafes when employees are travelling as well as office and

home based locations). These possibilities can be fed back into the requirements

process and can inspire new and exciting applications of the system. This effec-

tively “creates” new requirements by extending the system’s possible usage into

new areas.

So as can be seen there is great potential for a rich and fruitful set of interactions

between requirements analysis and architectural design, leading to a lot of design

synergy, if the two can be performed in parallel, based on a set of underlying

business principles.

In practice, achieving these valuable interactions between requirements and

architectural design means that the requirements analysts and the architects must

work closely together in order to make sure that each has good visibility and

understanding of the other’s work and that there is a constant flow of information

and ideas between them.

As we said in the previous section, it is also important that the project

manager is involved in this process. While we do not have space here to discuss

the interaction with the project manager in detail, it is important to remember

that the project manager is ultimately responsible for the cost, risk and schedule

for the project. It is easy for the interplay between requirements and architecture

to suggest many possibilities that the current project timescales, budget and risk

appetite do not allow for, so it is important that the project manager is involved

in order to ensure that sound prioritisation is used to decide what is achievable

at the current time, and what needs to be recorded and deferred for future

consideration.
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19.6 Case Study

19.6.1 The Problem

A major clothing retailer was experiencing problems with stock accuracy of size-

complex items in its stores, leading to lost sales and a negative customer perception.

A size-complex such as a men’s suit is an expensive item which is sold in many

different size permutations. A store will typically only have a small stock of each size

permutation (for example, 44-Regular) on display or in its stockroom, since larger

stock levels take up valuable store space and drive up costs in the supply chain.

Manual counting of size-complex items is laborious and error-prone. Even

a small counting error can also lead to a critical stock inaccuracy, where the store
believes it has some items of a particular size in stock but in fact has none. Critical

inaccuracies lead to lost sales when customers cannot find the right size of an item

they want to buy.

According to inventory management systems, the retailer’s stock availability

was around 85% for size-complex lines (that is, only 15% were sold out at any one

time). However stock sampling indicated that real availability was as low as 45%

for some lines, and that critical inaccuracy (where the line is sold out but the stock

management system reports that there is stock available in store) was running as

high as 15%. This was costing millions of pounds in lost sales, and also driving

customer dissatisfaction up and customer conversion down (so customers were

leaving stores without buying anything).

19.6.2 Project Goals

The goal of the project was to drive a 3–5% upturn in sales of size-complex lines by

replacing error-prone and time-consuming manual stock counting with a more

accurate and efficient automated system. By reducing the time taken to do a stock

count from hours to a few minutes, the retailer expected to:

• Increase the accuracy of the stock count;

• Reduce the level of critical inaccuracy to near zero;

• Drive more effective replenishment;

• Provide timely and accurate information to head office management.

19.6.3 Constraints and Obstacles

The new system was subject to some significant constraints because of the environ-

ment into which it was to be used and deployed.
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• The in-store equipment had to be simple to use by relatively unskilled staff with

only brief training.

• The in-store equipment had to be robust and highly reliable. The cost of repair or

replacement of units in stores was high and would eat away at much of the

expected profits.

• The system had to be compatible with the infrastructure currently installed in

stores. This was highly standardised for all stores and comprised: a store server

running a fairly old but very stable version of Microsoft Windows; a wireless

network, with some bandwidth and signal availability constraints in older stores

because of their physical layout; and a low-bandwidth private stores WAN

carrying mainly HTTP and IBM MQ traffic.

• The system had to be compatible with the infrastructure and systems which ran

in Head Office and in partner organisations.

• The solution had to minimise the impact on the existing distribution channels

and minimise any changes that needed to be made by suppliers and distributors.

• The solution had to minimise any increase in material or production costs.

Some further constraints emerged during the early stages of the project as

described below.

19.6.4 Solution Evolution

The eventual architectural solution emerged over a number of iterations.

19.6.4.1 Initial Design

RFID (Radio Frequency Identification) was chosen as the underpinning technology

for contactless data transfer. The initial concept was very simple: a passive (non-

powered) RFID tag would be attached to each garment, and would store its UPC

(universal product code, analogous to a barcode) which defined the garment’s size,

stroke etc.

A portable RFID reader would read the UPCs of all the garments in the area

being counted, collate and filter the data, and send the resulting counts to the central

stock management system in the form of a standard “stock correction” (Fig. 19.4).

This design illustrated the framing relationship between architecture and

requirements. The retailer had some experience of RFID for stock-taking, but

only at the pallet level, not for individual items.

19.6.4.2 First Iteration

Further investigation revealed that there were two types of RFID tag available for

use, read-only (write once) and read-write (write many times). Read-write tags

344 E. Woods and N. Rozanski



www.manaraa.com

would be required for the solution above, since the UPC would need to be written to

the tag when it was attached to the garment, rather than when the RFID tag was

manufactured. However read-write tags were significantly more expensive and less

reliable, so this approach was ruled out.

Ruling out read-write tags was a fairly significant change of direction, and was

led primarily by cost and architectural concerns. However, since it had a significant

impact on the production and logistics processes, the decision (which was led

by architects) required the participation of a fairly wide range of business and IT

stakeholders.

Since each RFID tag has a world-unique serial number, a second model was

produced in which the serial number of a read-only tag would be used to derive the

UPC of the garment. Once the tag was physically attached to the garment, the

mapping between the tag’s serial number and the garment’s UPC would be written

to a mapping table in a database in the retailer’s data center (Fig 19.5).

There were again some significant implications to this approach, which required

the architects to lead various discussions with store leaders, garment manufacturers,

logistics partners and technology vendors. For example, it was necessary to develop

a special scanning device for use by manufacturers. This would scan the RFID
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serial number using an RFID scanner, capture the garment’s UPC from its label

using a barcode scanner, and transmit the data reliably to the mapping system at the

retailer’s data center. Since manufacturers were often located in the Far East or

other distant locations, the device had to be simple, reliable and resilient to network

connectivity failures.

This iteration illustrated the constraining relationship between architecture and

requirements. The immaturity of the read-write RFID technology, and the potential

cost implications of this approach led to a solution that was more complex, and

imposed some significant new requirements on garment manufacturers, but would

be significantly more reliable and cheaper to operate.

19.6.4.3 Second Iteration

It was initially planned to derive the UPC of the counted garment at the time that the

tag serial numbers were captured by the in-store reader. However the reader was a

relatively low-power device, and did not have the processing or storage capacity to

do this. An application was therefore required to run on the store server, which

maintained a copy of the mapping data and performed the required collation before

the counts were sent off (Fig. 19.6).

This iteration also illustrated the constraining relationship between architecture

and requirements.

19.6.4.4 Third Iteration

The next consideration was product returns, an important value proposition for this

retailer. If a customer were to return a product for resale, then any existing tag
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would need to be removed, since it might have been damaged, a new tag attached,

and the mapping table updated before the item was returned to the shop floor. This

required a special tag reader on the shop floor, and also at the retailer’s distribution

centers.

This led to the third major iteration of the solution architecture as shown in

Fig. 19.7.

This iteration illustrated the inspiring relationship between architecture and

requirements. It was primarily the consideration of the architecture that prompted

the addition of specific returns-processing capabilities to the solution, especially the

provision of the specialized tag readers for this purpose.

19.6.4.5 Further Refinements

Discussions were also held with the team that managed the stock system. It already

had the capability to enter stock corrections through a data entry screen, but an

automated interface would need to be added and it was necessary to confirm that the

system could deal with the expected volume of updates once the system was rolled

out to all stores. This became an architectural and a scheduling dependency that was

managed through discussions between the architects and project managers in both

teams.

After surveying the marketplace it became clear that the reader would have to be

custom-built. Manufacture was handed off to a third party but software architecture

considerations drove aspects of the reader design. It needed to be portable, with its
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own battery, and had to shut down gracefully, without losing data, if the battery ran

out. It also had to present a simple touch-screen user interface.

Another constraint which emerged in the early stages of the project was around

customer privacy. The retailer was very keen to protect its brand and its reputation,

and the use of RFID to tag clothing was becoming controversial. In particular there

was a concern amongst privacy groups that retailers would be able to scan clothes

when a customer entered a store, and use the information to identify the customer

and track their movements.

To allay any customer concerns, the tag was designed so that it could be removed

from the garment and discarded after purchase. The retailer also met with the

privacy groups to explain that their fears were unfounded, but needed to be careful

not to reveal too much detail of the solution before its launch. Architects were

involved in the technical aspects of this and also supported the retailer’s Marketing

Department who produced a leaflet for customers to explain the tags.

19.6.5 Project Outcome

The system was very successful. The initial pilot showed a consistent uplift in sales

for counted lines, which exceeded the project goals. It was popular with staff and

business users, and there was no customer resistance to the tags since they could be

removed once the item had been paid for.

There were some further lessons from the pilot that were incorporated into the

solution. For example, the readers proved to have a significantly larger operating

range than expected and care needed to be taken not to count stock that was in the

stock room rather than on the shop floor.

19.7 Evaluation of Approach

We have found the iterative approach to be an effective way of highlighting, early

in the software development lifecycle, areas where requirements are missing or

unclear, and which may otherwise only have become apparent much later in the

project. By proposing and evaluating an initial architecture, architecturally signifi-

cant problems and questions can also be made visible, and the right answers

determined, before there has been costly investment in developing software that

may later have to be changed.

Using iteration and refinement allows stakeholders to focus on key parts of

the solution, rather than the whole, and to develop the overall architecture in

stages. It also ensures that the proposed architecture can be considered in the

light of real-world constraints, such as time, budget, skills or location, as well as

just “architectural correctness.”
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There are some weaknesses to this approach however. There will be a significant

amount of uncertainty and change in the early stages of the lifecycle, and if ongoing

changes to the requirements or architecture are not communicated to everyone

concerned, then there is a significant risk that the wrong solution will be developed.

Also, many stakeholders are uncomfortable with this level of uncertainty. Users

may insist that the requirements are correct as initially specified, and object to

changes they view as being IT-driven rather than user-driven. Developers, on the

other hand, may struggle to design a system whose requirements are fluid or

unclear.

Finally, an iterative approach can be viewed by senior management as extending

the project duration. Explaining that this approach is likely to lead to an earlier

successful delivery can be difficult.

All of these problems require careful management, oversight and discipline on

the part of the project manager, the architect and the requirements analyst.

19.8 Lessons for Architects

The intertwined, parallel approach to relating system requirements and architectural

design is the result of our experience working as information system architects,

during which time we have attempted to use the ideas of the software architecture

research community as they have emerged. As a result of this experience, we have not

only refined our ideas about how an architect should work in the early stages of the

definition of a new system, but have also learned some useful lessons which we try to

capture here to guide others who are attempting the same type of work.

The lessons that we have found to be valuable during our attempts to work

collaboratively with requirements analysts and project managers are as follows.

• Early Involvement – it is important for you to be involved during the definition

and validation of requirements and plans, so aim to get involved as early in the

system definition process as possible, even if this involves changing normal

ways of working. Offering to perform early reviews and performing some of the

requirements capture or planning yourself (particularly around non-functional

requirements) can be a useful way into this process.

• Understand the Drivers – work hard to elicit the underlying business drivers that
have motivated the commissioning of the system or project you are involved in.

Often these drivers will not be well-understood or explicitly captured and so

understanding and capturing them will be valuable to everyone involved in the

project. Once you have the drivers you can understand the motivations for the

project and start to think about how design solutions can meet them.

• Intertwined Requirements and Architecture – we have found that there are real

benefits to the “twin peaks” approach of intertwining parallel requirements

gathering and architectural design activity. You should build a working relation-

ship with the requirements analyst(s) that allows this to happen and then work
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together with them in order to develop the requirements and the architecture

simultaneously with reference to each other.

• Work Collaboratively – as well as working in parallel and referencing each

other’s work, this approach needs a collaborative mindset on the parts of

the requirements analyst and the architect, so aim to establish this early and

try to work in this way. Of course, “it takes two to tango” so you may not always

be successful if the requirements analyst is unused to working in this way, but in

many cases if the architect starts to work in an open and collaborative way,

others are happy to do so too.

• Challenge Where Needed – as requirements start to emerge, do not be afraid

to challenge them if you feel that they will be prohibitively expensive or risky to

implement, or you spot fundamental incompatibilities between different sets of

requirements that will cause severe implementation difficulties. It is exactly this

sort of early feedback that is one of the most valuable outputs of this style of

working.

• Understand Costs and Risks–during the early stages of a large project you are in
a unique position to understand the costs and risks of implementing proposed

requirements, as it is unlikely that a project manager or a requirements analyst

will have a deep knowledge of the design possibilities for the system. You

should work with the project manager to understand the costs and risks inherent

in the emerging requirements, and then explain them to the other decision

makers on the project to allow more informed decisions to be made.

• Look for Opportunities – the other dimension that you can bring to the project in

its early stages is an understanding of opportunities provided by each of the

candidate architectural designs for the system. Your slightly different perspec-

tive on the business drivers, away from their purely functional implications,

allows a broader view that often results in an architecture that has capabilities

within it that can be used in many different ways. By pointing these capabilities

out to the requirements analyst, you may well inspire valuable new system

capabilities, even if they cannot be immediately implemented.

In short, our experience suggests that rather than accepting a set of completed

system requirements, architects need to get involved in projects early and working

positively and collaboratively with the requirements analysts and project managers

to shape the project in order to increase its chances of successful delivery, while

making the most of the potential that its underlying architecture can offer.

19.9 Related Work

As already noted, many other people working in the software architecture field have

explored the close relationship between requirements and software architecture.

The SEI’s Architecture Trade-off Analysis Method – or ATAM – is a structured

approach to assessing how well a system is likely to meet its requirements, based on

the characteristics of its architecture [10]. In the approach, a set of key scenarios are
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identified and analysed to understand the risks and trade-offs inherent in the design

and how the system will meet its requirements. When applied early in the lifecycle,

ATAM can provide feedback into the requirements process.

A related SEI method is the Quality Attribute Workshop – or QAW – which is a

method for identifying the critical quality attributes of a system (such as performance,

security, availability and so on) from the business goals of the acquiring organisation

[1]. The focus of QAW is identification of critical requirements rather than how the

system will meet them, and so is often used as a precursor to ATAM reviews.

Global Analysis [16] is another technique used to relate requirements and

software architecture by structuring the analysis of a range of factors that influence

the form of software architectures (including organisational constraints, technical

constraints and product requirements). The aim of the process is to identify a set

of system-wide strategies that guide the software design to meet the constraints that

it faces, so helping to bridge the gap between requirements and architectural design.

As well as architecture centric approaches, there have also been a number of

novel attempts to relate the problem domain and the solution domain from the

requirements engineering community.

One example is Michael Jackson’s Problem Frames approach [9], which

encourages the requirements analyst to consider the different domains of interest
within the overall problem domain, how these domains are inter-related via shared
phenomena and how they affect the system being built. We view techniques like

problems frames as being very complimentary to the ideas we have developed here,

as they encourage the requirements analyst to delve deeply into the problem,

domain and uncover the key requirements that the architecture will need to meet.

Another technique from the requirements engineering community is the KAOS

method, developed at the universities of Oregon and Louvain [13]. Like Problem

Frames, KAOS encourages the requirements analyst to understand all of the

problem domain, not just the part that interfaces with the system being built, and

shows how to link requirements back to business goals. Again we view this as

a complimentary approach as the use of a method like KAOS is likely to help the

requirements analyst and architecture align their work more quickly than would

otherwise be the case, as well as understand the problem domain more deeply.

19.10 Summary

In this chapter we have explained how our experience has led us to realise that

a much richer relationship can exist between requirements gathering and architec-

tural design than their classical relationship would suggest. Rather than passively

accepting requirements into the design process, much better systems are created

when the requirements analyst and architect work together to allow architecture

to constrain the requirements to an achievable set of possibilities, frame the

requirements making their implications clearer, and inspire new requirements

from the capabilities of the system’s architecture.
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Chapter 20

Economics-Driven Architecting for Non

Functional Requirements in the Presence

of Middleware

Rami Bahsoon and Wolfgang Emmerich

Abstract The current trend is to build distributed software architectures with

middleware, which provides the application developer with primitives for manag-

ing the complexity of distribution and for realizing many of the non-functional

requirements like scalability, openness, heterogeneity, availability, reliability and

fault-tolerance. In this chapter, we discuss the problem of evolving non-functional

requirements, their stability implications and economics ramifications on the soft-

ware architectures induced by middleware. We look at the role of middleware in

architecting for non-functional requirements and their evolution trends. We advo-

cate adjusting requirements elicitation and management techniques to elicit not just

the current non-functional requirements, but also to assess the way in which they

will develop over the lifetime of the architecture and their economics ramifications.

These ranges of requirements may then inform the selection of distributed com-

ponents technologies, and subsequently the selection of application server products.

We describe an economics-driven approach, based on real options theory, which

can assist in informing the selection on middleware to induce software architectures

in relation to the evolving non-functional requirements. We review its application

through a case study.

20.1 Middleware-Induced Architectures

The requirements that drive the decision towards building a distributed system

architecture are usually of a non-functional nature. Scalability, openness, heteroge-

neity, and fault-tolerance are just examples. The current trend is to build distributed

systems architectures with middleware technologies such as Java 2 Enterprise Edition

(J2EE) [1] and the Common Object Request Broker Architecture (CORBA) [2].

COTS Middleware simplifies the construction of distributed systems by providing

high-level primitives, which shield the application engineers from distribution com-

plexities, managing systems resources, and implementing low-level details, such

as concurrency control, transaction management, and network communication.

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_20, # Springer-Verlag Berlin Heidelberg 2011
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These primitives are often responsible for realizing many of the non-functional

requirements in the architecture of the software system induced. Despite the fact

that architectures and middleware address different phases of software develop-

ment, the usage of middleware can influence the architecture of the system being

developed. Conversely, specific architectural choices constrain the selection of the

underlying middleware [3]. Once a particular middleware system has been chosen

for a software architecture, it is extremely expensive to revert that choice and adopt

a different middleware or a different architecture. The choice is influenced by the

non-functional requirements. Unfortunately, these requirements tend to be unstable

and evolve over time and threaten the stability of the architecture. Non-functional

requirements often change with the setting in which the system is embedded, for

example when new hardware or operating system platforms are added as a result of

a merger, or when scalability requirements change due to sudden increase in users

as it is the case of successful e-commerce systems.

Adopting a flexible COTS middleware induced-architecture that is capable of

accommodating future changes in non-functional requirements, while leaving the

architecture intact is important. Unfortunately, such viability and sustainability of

the choice comes with a price. This is often a matter of how valuable this flexibility

will be in the future relative to the likely changes in non-functional requirements.

When such flexibility ceases to add a value and becomes a liability, watch out,

the “beauty” is becoming wild and intolerable. Alternatively, a middleware with

limited flexibility may still realize the change through “cosmetic” solutions of

ad-hoc or proprietary nature, such as modifying part of the middleware; extending

the middleware primitives; implementing additional interfaces; and so forth. These

solutions could seem to be costly, problematic, and unacceptable; yet they may turn

to be more cost-effective in the long-run.

As a motivating example, consider a distributed software architecture that is to

be used for providing the back-end services of an organization. This architecture

will be built on middleware. Depending on which COTS middleware is chosen,

different architectures may be induced [3]. These architectures will have differences

in how well the system is going to cope with changes. For example, a CORBA-based

solution might meet the functional requirements of a system in the same way as

a distributed component-based solution that is based on a J2EE application server.

A notable difference between these two architectures will be that increasing scalabi-

lity demands might be easily accommodated in the J2EE architecture because J2EE

primitives for replication of Enterprise Java Beans can be used, while the CORBA-

based architecture may not easily scale. The choice is not straightforward as the

J2EE-based infrastructures usually incur significant upfront license costs. Thus, when

selecting an architecture, the question arises whether an organization wants to invest

into an J2EE application server and its implementation within an organization,

or whether it would be better off implementing a CORBA solution. Answering

this question without taking into account the flexibility that the J2EE solution

provides and how valuable this flexibility will be in the future might lead to making

the wrong choice.
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The chapter is organised as follows: Sect. 20.2 reports on a case study, which

demonstrates how economics-driven approaches can inform the selection of more

stable middleware-induced architectures and discusses observation resulted from

its application. Section 20.3 discusses closely related work. Section 20.4 concludes.

20.2 Case Study

20.2.1 Rationale and Aims

The case study demonstrates a novel application of real options theory and its

fitness for informing the selection of a more “stable” middleware-induced architec-

ture. The observations derived upon conducting the case aims at advancing our

understanding to the architectural stability problem, when addressed in relation to

middleware. The case simulates the selection process inspired by economics-driven

approaches and highlights possible insights that could derive from the application

of real options theory to the selection problem. In particular, the case study extends

the confidence in the following specific claims: (1) the uncertainty, attributed to the

likelihood of change(s), makes real options theory superior to other valuation

techniques, which fall short in dealing with the value of architectural flexibility

under uncertainty; (2) the flexibility of a middleware-induced architecture in face

of likely changes in requirements creates values in the form of real options; (3)

The problem of finding a potentially stable middleware-induced architecture

requires finding a solution that maximizes the yield in the added value, relative to

some likely future changes in requirements. If we assume that the added value is

attributed to flexibility, the problem becomes maximizing the yield in the embed-

ded or adapted flexibility provided by the selected middleware-induced architecture

relative to these changes; and nevertheless (4) the decision of selecting a potentially

stable architecture has to maximize the value added relative to some valuation

points of view: we take savings in future maintainability as one dimension of value

to illustrate the approach.

We note that case studies have been extensively used to empirically assess

software engineering approaches. When performed in real situations, case studies

provide practical and empirical evidence that a method is appropriate to solve

a particular class of problems. According to Dawson et al. [4], conducting con-

trolled and repeatable experiments in software engineering is quite difficult, if not

impossible to accomplish. This is mainly because the way software engineering

methods are applied varies across different contexts and involve variables that

cannot be fully controlled. We note that the primary aim of this case study is to

show how economics-driven approaches can provide an effective alternative to

inform the selection of middleware-induced architectures. Under no considerations

should the results be regarded as a definite distinction of the merit of one technology

over the other as we have only used “flavors” of CORBA and J2EE.
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20.2.2 Setting

Let us observe how the flexibility of a software architecture, when induced by

different COTS middlewares, differs in coping with changes in non-functional

requirements. We use the Duke’s Bank application [1], an online banking appli-

cation, which adequately represents a medium-size component-based distributed

system. The architecture of the Duke’s Bank application has a three-tier style,

given in Fig. 20.1. The architecture has two clients: an application client used

by administrators to manage customers and accounts, and a Web client used by

customers to access account statements and perform transactions. The server-side

components perform the business methods: these include managing: customers,

accounts, and transactions. The clients access the customer, account, and transac-

tion information maintained in a database.

We instantiate from the core architecture two versions, each induced by a different

COTS middleware: one with CORBA and the other with J2EE. Assume that the

Duke’s Bank system needs to scale to accommodate the growing number of clients in

1-year time. Scalability denotes the ability to accommodate a growing future load, be

it expected or not. We observe how a likely future change in scalability, a represen-

tative critical change in non-functional requirement, could impact the architectural

structure of each version. The challenge of building a scalable system is to support

changes in the allocation of components to hosts without breaking the architecture

of the software system; changing the design and code of a component [5]; and/or

rippling the change to impact other non-functionalities such as performance, reliabil-

ity, and availability.

We use replication, an architectural mechanism, to achieve scalability. Both

CORBA and J2EE do provide the primitives or guidelines for scaling a software

system using replication, which make the comparison between the two versions

feasible. In particular, the Object Management Group’s CORBA specification

defines a fault tolerance and a load balancing support, which provides the core

capability for implementing scalability through replication. Similarly, J2EE

provides clustering primitives for scaling the software system through replication.

We adopt a goal-oriented approach to refining requirements [6, 7]. We refine the

goal, using guidance on how it could be operationalised by the architecture, when

DB

Customer

Accounts

Transaction

Servers

Account

Customer

Transaction

Web Client

Application

Fig. 20.1 The architecture of

the duke’s bank
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induced by a particular middleware. In more abstract terms, the guidance was given

through the knowledge of the domain; vendor’s specification [1, 2]; related design

and implementation experience, mainly that of Othman et al. [8, 9]. We note that

different architectural mechanisms may operationalise the scalability goal. As an

operationalisation alternative, we use replication as way for achieving scalability.

The reason is due to the fact that both CORBA and J2EE do provide the primitives

or guidelines for scaling a software system using replication, which make the

comparison between the two versions feasible. In particular, the Object Manage-

ment Group’s CORBA specification [2] defines a fault tolerance and a load balanc-

ing support, both when combined provide the core capability for implementing

scalability through replication. Similarly, J2EE provides the primitives for scaling

the software system through replication. Hence, the refinement and its corresponding

operationalisation are guided by the solution domain (i.e., the middleware). Refine-

ment of the scalability goal is depicted in Fig 20.2. We then estimate the structural

impact and the SLOC to be added upon achieving scalability on both versions.

20.2.3 Scaling the J2EE Induced Architecture

An observable advantage of scaling the software architecture when induced by

J2EE is that no development effort is required to realize the scalability requirements

through replication, as when compared to the CORBA version. J2EE does provide

clustering primitives for scaling the software system, which result in making the

architecture of the software system more flexible in accommodating the change

in scalability, as when compared to the CORBA version.
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20.2.4 Scaling the CORBA Induced Architecture

Considering the CORBA-induced architecture of the Duke’s Bank, supporting

scalability through replication does not leave the middleware infrastructure and

the application layer intact. Though the use of both CORBA specification and

design patterns [10], has simplified the task of realizing the requirements for

achieving fault tolerance and load balancing, implementation and integration over-

head have not been abandoned. In particular, the fault tolerance and load balancing

services need to be implemented and be integrated into the used middleware. The

server and the client application need to be updated.

20.2.5 Valuing Flexibility with Options Theory

Middleware-induced software architectures differ in coping with changes in scal-

ability. A question of interest is how valuable is the flexibility of either alternative,

relative to likely change in scalability, will be in the long-run? How can we decide

which COTS solution is better? The economic interplay between evolving require-

ments and the flexibility of the COTS middleware architecture in accommodating

these changes in requirements is the governing factor that decides.

Let us assume that we are given the choice of two middleware M0 and M1

to induce the architecture of a particular system. Let us assume that S0, S1 are the

architectures obtained from inducing M0 and M1 respectively. Say, M1 is an

economical choice, if it adds value to S1 relative to S0. We attribute the added

value to the enhanced flexibility of S1 over S0 in responding in future changes in

requirements. But the added value is uncertain, as the demand and the nature of the

future changes are uncertain. Using options theory can inform the selection.

Real options analysis recognizes that the value of the capital investment lies not

only in the amount of direct revenues that the investment is expected to generate,

but also in the future opportunities that flexibility creates [11, 12]. These include

growth, abandonment or exit, delay, and learning options. An option is an asset that

provides its owner the right without a symmetric obligation to make an investment

decision under given terms for a period of time into the future ending with an

expiration date [13]. If conditions favourable to investing arise, the owner can

exercise the option by investing the exercise price defined by the option. A call

option gives the right to acquire an asset of uncertain future value for the strike price.

ArchOptions [10, 14, 15] values the growth options of an architecture relative to
some future changes, as a way for understanding the architectural flexibility and its
stability implications. A growth option is a real option to expand with strategic

importance [13] and is common in infrastructure-based investments, as is the case

with software architectures. Since the future changes are generally unanticipated,

the value of the growth options lies in the enhanced flexibility of the architecture to

cope with uncertainty.
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Deciding on a particular middleware to induce the software system architecture

can be seen as an investment to purchase future growth options that enhance the

upside potentials of the structure, paying an upfront cost Ie, which corresponds to

the cost of developing the architecture by the given middleware. A change in future

requirement ii is assumed to “buy” xi% of the “architectural potential” taking the

form of embedded flexibility, paying Cei, an estimate of the likely cost to accom-

modate the change in the software system. This is analogous to a call option to buy
(xi%) of the base project, paying Cei as exercise price. We view the investment

opportunity in the system as a base investment plus call options on the future

opportunities, where a future opportunity corresponds to the investment to accom-

modate some future requirement(s). The call options financial/real and their

corresponding ArchOptions analogy is depicted in Table 20.1.

The payoff of the constructed call option gives an indication of how valuable the

flexibility of an architecture is, when enduring some likely changes in requirements.

The value of the architecture, is expressed in (1) accounting for both the expected

value and exercise cost to accommodate future requirements ii, for i � n. Valuing

the expectation E of expression (1) uses the assumptions of Black and Scholes4 and

detailed in previous work [15].

� Ie þ
Xn

i¼0

E½maxðxiV � Cei; 0Þ� (20.1)

The selection has to be guided by the expected payoff in (� Ie +∑ i¼1. . .n E [max

(xiV � Cei, 0])S1 relative to that of S0. That is, if (� Ie +∑i¼1. . .n E [max (xiV � Cei,

0)]S1 >∑ i¼1. . .n E [max (xiV � Cei, 0)]S0) for some likely changes, then it is worth

investing in M1, as M1 is likely to generate more growth options for S1 than for S0.

We use future savings in maintenance to quantify the value added due to a selection.

Assume that xiVS1/So is the expected savings in S1 over S0 due to the selection: if

(� Ie + ∑ i¼1. . .n E [max (xiVS1/So � Cei, 0)]S1>¼0), then investing in M1 is said to

payoff. An optimal payoff could be when the option value approaches the maxi-

mum relative to some changes in non-functional requirements.

For a likely change in requirement k,
Call option in-the-money. If (E [max (xkV � Cek, 0)])S1 >0, then the flexibility

of S1 is likely to payoff, relative to S0, if k need to be exercised. Thus, inducing the

Table 20.1 Financial/real options/archoptions analogy

Option on stock Real option on a project ArchOptions

Stock Price

Value of the expected cash

flows

Value of the “architectural potential”

relative to the change (xiV)

Exercise Price Investment cost

Estimate of the likely cost to

accommodate the change (Cei)

Time-to-expiration

Time until opportunity

disappears

Time indicating the decision to implement

the change (t)

Volatility

Uncertainty of the project

value

“Fluctuation” in the return of value of

V over a specified period of time (s)
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architecture with M1 has more promise than M0, as the flexibility of S1 in

responding to the likely change is more valuable for S1 than for S0.

Call option out-of-the-money: If (E [max (xkV� Cek, 0)])S1 ¼ 0, then M1 is not

likely to payoff relative to M0, as the flexibility of the architecture in response to k is
not likely to add a value for S1, if k need to be exercised. Two interpretations are

possible: (1) the architecture is overly flexible; its response to the change(s) has not

“pulled” the options. This implies that the embedded flexibility or the resources

invested in implementing flexibility are wasted to reveal the options relative to

the change. (2) The architecture is inflexible relative to the change; the cost of

accommodating the change on S1 is relatively high.

Let CORBA and J2EE correspond to M0 and M1 respectively. S0 and S1 refer to

the Duke’s Bank architecture when respectively induced by M0 and M1. We use

$6,000 for man-month to cast the effort into cost. We construct a call option for the

future scalability change, where the change is analogous to buying an “architectural

potential”, paying an exercise price. We focus our attention on the payoff of the

call options (i.e., ∑ i¼1. . .n E [max (xiV � Cei, 0)] S1 relative to ∑ i¼1. . .n E[max

(xiV� Cei, 0)]S0), as they are revealing for the flexibility of the architecture-induced

in responding to the likely future changes.

Estimating (Cei). The exercise price corresponds to the cost of implementing

replication to scale each structure, given by Cei for requirement i. As the replicas

may need to be run on different hosts, we devise a general model for calculating

Ce as a function of the number of hosts, given by:

Ce ¼
X

h¼1...k

Cdev; Cconfig; Cdeploy; Clicesh; Chardw

� �
h

(20.2)

h corresponds to the number of hosts. Cdev, Cconfig, and Cdeploy, respectively

correspond to the cost of development, configuration, and deployment for the

replica on host h. Clicesh and Chardw respectively correspond to licenses and hard-

ware costs, if any, given in ($). We provide three values: optimistic, likely, and

pessimistic for each parameter, calculated using COCOMO II [16]. Upon varying

the number of hosts, we report on pessimistic values, for they are more revealing.

For simplification, we ignore any associated hardware costs.

Estimating (xiV ¼ xiVS1/S0). To value the “architectural potential” of S1 rela-

tive to S0, we use the expected savings in development, configuration, and deploy-

ment efforts, when replication need to be accommodated on S1 relative to S0,

and respectively denoted as DS1/S0Cdev, D S1/S0Cconfig, D S1/S0Cdeploy. Relative

savings in licenses and hardware may also be considered and respectively denoted

by DClicesh, DChardw.

xiVS1=S0¼
X

h¼1...k

ðDS1=S0Cdev;DS1=S0Cconfig;DS1=S0Cdeploy;DS1=S0Clicesh;DS1=S0ChardwÞh
(20.3)
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The savings, however, are uncertain and differ with the number of hosts, as the

replicas may need to be run on different hosts. Such uncertainty makes it even more

appealing to use “options thinking”. The valuation using ArchOptions is flexible to

result in a comprehensive solution that incorporates multiple valuation techniques,

some with subjective estimates, and others based on market data, when available.

The problem associated with how to guide the estimation in this setting, we term as

a multiple perspectives valuation problem. To introduce discipline into this setting

and capture the value from different perspectives, we had suggested valuation

points of view (i.e., market or subjective estimates) as a solution. The framework

is comprehensive enough to account for the economic ramifications of the change,

its global impact on the architecture, and on other architectural qualities. The

solution aims to promote flexibility through incorporating both subjective estimates

and/or explicit market value, when available. It is worth nothing that for this case

we only report on the structural maintainability value point of view. Nevertheless,

the valuation could be extended to include other valuation dimensions.

Calculating the volatility (s).Volatility is a quantitative expression of risk.

Volatility is often measured by standard deviation of the rate of return on an asset

price S (i.e., xiV) over time. Unlike with financial options, in real options the

volatility of the underlying asset’s value cannot be observed and must be estimated.

During the evaluation of architectural stability, it is anticipated and even expected

that stakeholders might undervalue or overvalue the architectural potential relative

xiV to the change in requirement(s). In other words, stakeholders tend to be uncertain

about such value. For example, back to the motivating example of Sect. 20.4,

suppose that the value of the architectural potential of inducing an architecture

with J2EE and not CORBA (or perhaps vice versa) take the form of relative savings

in development and configuration effort, if the future change in scalability need to

be exercised on the induced structure: estimating such savings may vary from one

architect to another within the firm. It differs with the architect’s experience, the

novelty of the situation; consequently, it could be overvalued or undervalued.

The variation in the future savings, hence, determines the “cone of uncertainty” in

the future value of the architectural potential for embarking on a J2EE-induced

architecture relative to the CORBA one. Thus, it is reasonable to consider the

uncertainty of the architectural potential to correspond to the volatility of the

stock price. In short, the volatility s tends to provide a measure of how uncertain

the stakeholders are about the value of the architectural potential relative to change;

it tends to measure fluctuation in the said value. Volatility stands for the “fluctua-

tion” in the value of the estimated xiV. We take the percentage of the standard

deviation of the three xiVs estimates-the optimistic, likely, and pessimistic values to

calculate s.
Exercise time (t). The risk-free rate is a theoretical interest rate at which an

investment may earn interest without incurring any risk. An increase in the risk-free

interest rate leads to an increase in the value of the option. Finding the correspon-

dence of this parameter is not straightforward, for the concept of interest in the

architectural context does not hold strongly (as it is the case in the financial world)

and is situation dependent. In our analogy, we set the risk-free interest rate to zero
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assuming that value of the architectural potential is not affected by factors that

could lead to either earning or depreciation in interest. That is, the value of

architectural potential today is that of the time of exercising the flexibility option.

However, we note that it is still possible for the analyst to account for this value,

when applicable. For example, if the architectural platform is correlated in a way

with the market, then the value of the architectural potential may increase or

decrease with the market performance of the said platform. We set the exercise

time to 1 year, assuming that the Duke’s Bank needs to accommodate the change in

1 year time. We set the free risk interest rate to zero assuming the value of money

today is the same as that of 1 year’s time.

20.2.6 Tradeoffs Analysis

Scenario 1. We use JBoss, an open source, as M1 with Clicesh ¼ 0. Consider the

case of running the replicas on one host. Table 20.2 shows that the overall expected

savings xiVS1/S0 of inducing the structure with S1 relative to S0 are in the range

of $96,450(pessimistic) to $150,704 (optimistic) for realizing the scalability

requirements. As far as the development effort is concerned, expected savings are

in the range of $96,481(pessimistic) to $ 150,753 (optimistic). As far as configura-

tion effort is concerned, S1 has not reported any expected savings relative to S0.

However, the difference is insignificant. As for the effort of deployment, both are

comparable when it comes to SLOC.

Let us use xiVS1/S0 to quantify the added value, taking the form of options due to

the embedded flexibility on S1 relative to S0. Table 20.2 shows that S1 is in the

money relative to the development, configuration, and the deployment and when

compared to S0. Table 20.2 reads that inducing the architecture with M1 is likely to

enhance the option value by an excess of $96,450 (pessimistic) to $150,704

(optimistic) over S0, if the change in scalability need to be exercised in 1 year

Table 20.2 The options in ($) on S1 relative to S0 for one host, with S1 license cost (Clicesh) ¼ 0

Cei xiVS1/S0 s t Options

Over all

Optimistic 1,558 96,450

22.7 1

94,892

Likely 1,948 120,563 118,615

Pessimistic 2,435 150,704 148,269

Development

Opt 0 96,481

22.7 1

96,481

Likely 0 120,602 120,602

Pes. 0 150,753 150,753

Configuration

Opt 1,558 �31

22.7 1

0

Likely 1,948 �39 0

Pes. 2,435 �49 0

Deployment

Opt 0 0

22.7 1

0

Likely 0 0 0

Pes. 0 0 0

362 R. Bahsoon and W. Emmerich



www.manaraa.com

time. Thus, S1 induced by M1 is likely to add more value in the form of options

relative to the change, when compared to S0. Note that, though S1 is flexible relative

to the scalability change, it might not necessarily mean that it might be flexible with

respect to other changes. Obviously, J2EE does provide the primitives for scaling

the software system, which result in making the architecture of the software system

more flexible in accommodating the change in scalability, as when compared to the

CORBA version. Calculating the options of S0 relative to S1, S0 is said to be out of

the money for this change. The CORBA version has not added value, relative to

J2EE as the cost of implementing the change was relatively significant to “pull” the

options.

Scenario 2. We use WebLogic server [http://www.bea.com/] as M1 with an

average upfront payable license cost Clicesh ¼ $25,000/host. As an upfront license

fee is incurred, increasing the number of hosts may carry unnecessary expenditures

that could be avoided, if we adopt M0 instead. However, M0 does also incur costs

to scale the system, due to the development of the load balancing and the fault

tolerance services. Such a cost, however, maybe “diluted” as the number of hosts

increases. The cost will be distributed across the hosts and incurred once, as the

developed services can be reused across other hosts. An additional configuration

and deployment cost materializes per host and sum up to Ce (2), when an additional

host is needed to run a replica.

We calculate xiVS0/S1 using (3) and then the options of S0 relative to S1. We

adjust the options by subtracting the upfront expenditure of developing both

services on M0, as reported in Table 20.3. The adjusted options reveal situations

in which S0 is likely to add value relative to S1, when the upfront cost is considered.

These results may provide us with insights on the cost effectiveness of implementing

fault tolerance and load balancing support to scale the software system relative to

S1, where a licensing cost is incurred per host.

Therefore, a question of interest is: when is it cost effective to use M0 instead

of M1? When does the flexibility of M1 cease to create value relative to M0? We

assume that for any k hosts, S0 and S1 are said to support UkS0 and UkS1 concurrent

users, respectively with UkS0 equal or different to UkS1. For the non-adjusted

options results of Table 20.3, if we benchmark these options values against the

cost of developing the load balancing and fault tolerance services (i.e., the upfront

Table 20.3 Options in ($) on S0 relative to S1 with (Clicesh) ¼ $25,000, s ¼ 22.7, and pessimistic

Cei

h Cei xiVS0/S1 Options Adjusted options Conc. users

1 2,386 25,049 2,343 0 U1S0 vs U1S1
2 4,772 50,049 4,772 0 U2S0 vs U2S1
3 7,158 75,049 67,891 0 U3S0 vs U3S1
4 9,544 100,049 90,505 0 U4S0 vs U4S1
5 11,930 125,049 113,119 0 U5S0 vs U5S1
6 14,316 150,049 135,733 0 U6S0 vs U6S1
7 16,702 175,049 158,347 7,643 U7S0 vs U7S1
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cost), we can see that payoff following developing these services is far from

breaking even for less than 7 hosts. Once we adjust the options to take care of the

upfront cost of investing to implement the both services, the adjusted options for S0
relative to S1 reports values in the money for the case of seven or more hosts,

as shown in Table 20.3. For hosts � 7, M0 appears to be a better choice under the

condition that UnS0 � UnS1. This is due to the fact the expenditures in M1 licenses

increases with the number of hosts, henceforth, the savings in adopting M1 cease to

exist. For hosts < 7, M1 has better potentials and appears to be more cost-effective

under the condition that UnS1 � UnS0.

20.3 Discussion

The change impact analysis has shown that the architectural structure of S1 is left

intact when the scalability change needs to be accommodated. However, the

structure of S0 has undergone some changes, mostly on the architectural infrastruc-

ture level to accommodate the scalability requirements. From a value-based per-

spective, the search for a potentially stable architecture requires finding an

architecture that maximizes the yield in the added value, relative to some future

changes in requirements. As we are assuming that the added value is attributed to

flexibility, the problem becomes selecting an architecture that maximize the yield

in the embedded or adapted flexibility in a software architecture relative to these

changes. Even, if we accept the fact that modifying the architecture or the infra-

structure is the only solution towards accommodating the change, analyzing the

impact of the change and its economics becomes necessary to see how far we are

expending to “re-maintain” or “re-achieve” architectural stability relative to

the change. Though it might be appealing to the intuition that the “intactness” of

the structure is the definitive criteria for selecting a “more” stable architectures, the

practice reveals a different trend; it boils down to the potential added value upon

exercising the change.

For the first scenario, the flexibility has yielded a better payoff for S1 than for S0,

while leaving S1 intact. However, the situation and the analysis have differed upon

varying the number of hosts and upon factoring a license costs for S1. Though S0
has undergone some structural changes to accommodate the change, the case has

shown that it is still acceptable to modify the architecture and to realize added value

under the conditions that UnS0 � UnS1 for seven or more hosts (Table 20.3,

Fig 20.3). Hence, what matters is the added value upon either embarking on

a “more” flexible architecture, or investing to enhance flexibility which is the

case for implementing load balancing and fault tolerance on S0. For the case of

WebLogic, though M1 is in principle more flexible, the flexibility comes with

a price, where the flexibility turned to be a liability rather than a value for seven

or more hosts, as when compared with the JacORB, under the condition that

UnS0 � UnS1.
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Observation 1. The “coupling” between middleware and architecture helps

in understanding evolution trends of distributed software architectures and in

connection with the solution domain.

Our hypothesis that middleware induced-software architectures differ in coping

with changes is verified to be true for the given change. Based on the previous

observations, we can see that the stability of S1 and S0 appears to be dependent on

the flexibility of the middleware in accommodating the likely changes in the

scalability requirements. For the category of distributed software systems that are

built on top of middleware, the results of the case study affirm the belief that

investigating the stability of the distributed software architecture could be fruitless,

if done in isolation of the middleware, where the middleware constraints and

dominate much of the solution that relate to the non-functionalities, managing

system resources, and their ability to smoothly evolve over the life time of the

software system. Hence, the development and the analysis for architectural stability

and evolution shall consider the “coupling” between the architecture and the

middleware. This addresses pragmatic needs and is feasible even at earlier stages

of the software development life cycle: a considerable part of the distributed system

implementation could be available, when the architecture is defined, for example,

during the Elaboration phase of the Unified Process. We also note that the change

in requirements could have been addressed by other architectural mechanisms.

However, the middleware has guided the solution for evolving the software system.

For instance, the choice of replication as an architectural mechanism for scaling the

software system, with a given architectures S1 and S0 was respectively guided

by the clustering primitives provided by M1 and the core capabilities provided

by M0 to support load balancing and fault tolerance. Interestingly, Di Nitto and

Rosenblum [3] state that “despite the fact that architectures and middleware address

different phases of software development, the usage of middleware and predefined

components can influence the architecture of the system being developed. Con-

versely, specific architectural choices constrain the selection of the underlying

middleware used in the implementation phase”. Medvidovic, Dashofy and Taylors

[17] tate the idea of coupling the modeling power of software architectures with the
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implementation support provided by middleware. They noted, “architectures and

middleware address similar problems, that is large-scale component-based devel-

opment, but at different stages of the development life cycle.” In more abstract

terms, Rapanotti, Hall, Jackson, and Nuseibeh [18] advocate the use of information

in the solution domain (e.g., the middleware-to be induced for our case) to inform

the problem space:

Whereas Problem Frames are used only in the problem space, we observe that each of these

competing views uses knowledge of the solution space: the first through the software

engineer’s domain knowledge; the second through choice of domain-specific architectures,

architectural styles, development patterns, etc.; the third through the reuse of past develop-
ment experience. All solution space knowledge can and should be used to inform the

problem analysis for new software developments within that domain [18].

The “coupling” between the middleware and the architecture becomes of higher

interest in case of developing and analyzing software systems for evolution. This

is because the solution domain can guide the development and evolution of the

software system; provide more pragmatic and deterministic knowledge on the

potential success (failure) of evolution, and consequently assist in understanding

the stability of the software architectures from a pragmatic perspective.

Observation 2. Understanding architectural stability and evolution in relation to

styles.

Following the definition of Di Nitto and Rosenblum [3], a style defines a set of
general rules that describe or constrain the structure of architectures and the way

their components interact. Styles are a mechanism for categorizing architectures

and for defining their common characteristics. Though S1 and S0 have exhibited

similar styles (i.e., three-tier), they have differed in the way they cope with the

change in scalability. The difference was not only due to the architectural style, but

also due to the primitives that are built-in in the middleware to facilitate scaling the

software system. The governing factor, hence, appears to be to a large extent

dependent on the flexibility of the middleware (e.g., through its built-in primitives)

in supporting the change. The intuition and the preliminary observations, therefore,

suggest that the style by itself is not revealing for the stability of the software

architecture when the non-functional requirements evolve. It is, however, a factor

of the extent to which the middleware primitives can support the change in non-

functional requirements. Interestingly, Sullivan et al. [19] claims that for a system

to be implemented in a straightforward manner on top of a middleware, the

corresponding architecture has to be compliant with the architectural constraints

imposed by the middleware. Sullivan et al. [19] support this claim by demonstrating

that a style, that in principle seems to be easily implementable using the COM

middleware, is actually incompatible with it. Following a similar argument, adopting

an architectural style that in principle appear to be suitable for realizing the non-

functionality and supporting its evolution, may not be compliant with the middleware

in the first place. And if the architectural style happens to be compliant with the

middleware, there are still uncertainties in the ability of the middleware primitives

to support the change. In fact, the middleware primitives realize much of the
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non-functional requirements. Hence, the architectural style by itself may not be

revealing for potential threats that the architecture may face when the non-functional

requirements evolve. The evolution of non-functionality maybe in principle easily

supported by the style, but could be uneasily accommodated by the middleware. An

observable advantage of scaling the software architecture induced by S1, for example,

is that no development effort required to realize the scalability requirements through

replication, as when compared to that of S0, knowing that in principle the style of

S1 and S0 exhibit similar capabilities. Engineering for stability and evolution,

requirements engineering has not only to be aware of the architecture (e.g., the

style), but also of the underlying middleware. For example, if we take a goal-oriented

approach to requirements engineering we advocate adjusting the non-functional

requirements elicitation and their corresponding refinements to be aware of both

the architectural style and the constraints imposed by middleware. The operationa-

lisation of these requirements in the software architecture have to be guided by both

the architectural style, the complaint middleware for the said style, and guided by

previous experience. This, we believe, is a pragmatic need towards engineering

requirements and developing “evolvable” software architectures that tend to be stable

as the non-functional requirements evolve.

20.4 Closely Related Work

The use of real options in software engineering. Economics approaches to software

design appeal to the concept of static Net Present Value (NPV) as a mechanism for

estimating value. These techniques, however, are not readily suitable for strategic

reasoning of software development as they fail to factor flexibility [20]. The use

of strategic flexibility to value software design decisions has been explored in, for

example [11, 12] and real options theory has been adopted to value the strategic

flexibility: Baldwin and Clark [21] studied the flexibility created by modularity in

design of components (of computer systems) connected through standard interfaces.

Sullivan et al. [22] pioneered the use of real options in software engineering. Sullivan

et al. suggested that real options analysis can provide insights concerning modularity,

phased projects structures, delaying of decisions and other dynamic software design

strategies. They formalized that option-based analysis, focusing in particular on

the flexibility to delay decisions making. Sullivan et al. [23] extended Baldwin and

Clark’s theory, which is developed to account for the influence of modularity on the

evolution of the computer industry. They treat the “evolovability” of software design

using the value of strategic flexibility. Specifically, they argued that the structure

and value of modularity in software design creates value in the form of real options.

A module creates an option to invest in a search for a superior replacement and to

replace the currently selected module with the best alternative discovered, or to keep

the current one if it is still the best choice. The value of such an option is the value that

could be realized by the optimal experiment-and-replace policy. Knowing this value
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can help a designer to reason about both investment in modularity and how much to

spend searching for alternatives.

Architectural evaluation. Existing methods to architectural evaluation have

ignored any economic considerations, with CBAM [24] being the notable excep-

tion. The evaluation decisions using these methods tend to be driven by ways that

are not connected to, and usually not optimal for value creation. Factors such as

flexibility, time to market, cost and risk reduction often have higher impacts on

value creation. Hence, flexibility is in the essence. In our work, we link flexibility to

value, as a way to make the value of stability tangible.

Relating CBAM to our work, the following distinctions can be made: with the

motivation to analyse the cost and benefits of architectural strategies, where an

architecture strategy is subset of changes gathered from stakeholders, CBAM does

not address stability. Further, CBAM does not tend to capture the long-term and the

strategic value of the specified strategy. ArchOptions, in contrast, views stability

as a strategic architectural quality that adds to the architecture values in the form of

growth options. When CBAM complements ATAM [25] to reason about qualities

related to change such as modifiability, CBAM does not supply rigorous predictive

basis for valuing such impact. Plausible improvements of the existing CBAM

include the adoption of real options theory to reason about the value of postponing

investment decisions. CBAM uses real options theory to calculate the value of

option to defer the investment into an architectural strategy. The delay is based on

cost and benefit information. In the context of the real options theory, CBAM tends

to reason about the option to delay the investment in a specific strategy until more

information becomes available as other strategies are met. ArchOptions, in contrast,

uses real options to value the flexibility provided by the architecture to expand

in the face of evolutionary requirements; henceforth, referred to as the options to

expand or growth options.

20.5 Conclusion

Though the reported observations reveal a trend that agrees with the intuition,

research, and the state-of-practice, confirming the validity of the observations are

still subject to careful further empirical studies. These studies may need to consider

other non-functional requirements, their concurrent evolution, and their corresponding

change impact on different architectural styles and middleware. As a limitation, we

have relaxed considering the change impact of scaling up the software system on other

non-functional requirements like security, availability and reliability. However, we

note that the analysis might get complex upon accounting for the impact of the change

on other non-functional requirements and their interactions. Note the change could

positively or negatively impact other non-functional requirements and understanding

the cost implications is not straightforward and worth a separate empirical investi-

gation. In this context, utilizing the NFR framework [26] could be promising to

model the interaction of various non-functional requirements, their corresponding
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architectural decisions, and the negative/positive contribution of the architectural

decisions in satisfying these non-functionalities. The framework could be then

complemented by means for measuring (1) the corresponding cost of implementing

the change itself, and (2) the additional cost due to the impact of the change on other

contributing or conflicting non-functionalities, as realized by either the CORBA or

the J2EE middleware-induced architectures.

It is also worth noting that the investment decision in either CORBA or the J2EE

might be influenced by other factors, such as the skills of the developers, the project

maturity, and other organizational factors. The devised real options model does

not explicitly take into account these factors. The treatment of these factors is left

implicit and sufficiently addressed by our use of COCOMO II, where COCOMO II

carries parameters to adjust the cost estimates based on these factors. It could be

also argued that in iterative development, when estimations are continuously

recalibrated (e.g., in the Unified Process), it is possible to come up with estimations

that are more accurate than COCOMO II, as they will take into account the above

mentioned factors.

We note that the flexibility of either solutions (i.e., the CORBA or the J2EE

induced-architectures) is closely tied to the problem domain. In particular,

domain-specific functional characteristics can also influence the flexibility of

the solution and its behavior, as both the application component and the infra-

structure are tightly coupled. The way the application components and the

infrastructure are coupled varies across various middlewares. For this study,

the functional characteristics are assumed to be stable for both the J2EE and the

CORBA versions; that is, they have not undergone any changes that require from

us understanding the impact of the functionality change on the flexibility of

either solutions. It will be interesting, however, to investigate how changes in

the domain functional characteristics can impact the flexibility and the stability

of the middleware-induced architectures.

In short, the choice of the distributed software system architecture has to

be guided by the choice of the underlying COTS middleware and its flexibility

in responding to future changes in non-functional requirements. This is necessary

to facilitate the evolution of the software system and to avoid unnecessary future

investments. Unfortunately, non-functional requirements tend to be unstable and

evolve over time to threaten the stability of the software system. Hence, there is

a need for flexible COTS middleware architectures that tend to be stable as

requirements evolve. But flexibility comes with a price. The economic interplay

between evolving requirements and architectural flexibility is the governing factor

that determines the cost-effectiveness of the middleware choice. No research effort

has been devoted for understanding the evolution of non-functional requirements

in relation to both the architecture and the COTS middleware when coupled, with

our work [10] being the notable exception. Future research focus may need to

consider other non-functional requirements, their concurrent evolution, and their

corresponding structural and run-time change impact on different architectural

styles and middleware, which we are investigating as part of our ongoing research

agenda.
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Chapter 21

Conclusions

P. Avgeriou, P. Lago, J. Grundy, I. Mistrik, and J. Hall

21.1 Issues and Trends in Relating Requirements

Engineering and Architecture

The preceding chapters in this book address a plethora of intriguing challenges,

all directed towards bridging the gap between requirements engineering and archi-

tecture. These challenges, put together, capture a large part of the problem space

currently faced by architects and requirements engineers alike. We review the

various challenges that have been discussed in the preceding chapters. We present

an abstracted form of the emerging trends that have been identified to deal with

these challenges, referring back to individual chapters in order to exemplify them.

Requirements and architectures are, by and large, based on different meta-

models which are problematic to semantically associate, e.g. use cases are seman-

tically distant to object-oriented classes and objects, even though use cases are

usually refined and elaborated through class models. One of the most popular

approaches in bridging the gap between the metamodels of requirements and

architecture is the goal-oriented paradigm. By expressing requirements as goals

to be achieved and gradually refining them through tasks, agents and other

elements, a transformation of problem space to solution elements can be achieved.

Different ways have been proposed to relate goal elements to elements of the

architecture. This gives a good indication of the semantic proximity between the

concepts of goals, agents and architecture concepts like components.

This book contains two examples of goal-oriented approaches. Lawrence Chung,

Sam Supakkul, Nary Subramanian, Jose Luis Garrido, Manuel Noguera, Maria V.

Hurtado, Maria Luisa, Rodriguez, and Kawtar Benghazi (Chap. 7) propose an

approach that transforms goal models into architecture models through a number of

intermediate transformations. These transformations allow requirements engineers

and architects to explicitly reason about the relationships between these problem

space goals and objectices, and realizing components within the architecture. Luciano

Baresi and Liliana Pasquale (Chap. 10) extend goal models with the notion of

adaptive goals. They then use these augmented goal models to automatically create

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
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the architecture of adaptive, service-centric applications. Tool support ensures the

identified adaptive goals are indeed realized in appropriate architectural solution

space components.

One of the ‘wholly grails’ of the software engineering community has been the

establishment of traceability between the artifacts produced and consumed across

the various software lifecycle activities. In this vein, traceability is one of the key

tools in relating the requirements engineering and architecting processes as it links

the products of these two activities. Of course traceability can also be established

between the processes themselves (e.g. the V model), but most approaches focus on

artifact traceability since the latter is more tangible and explicit. Traceability is

usually applied among elements that belong to different models (or different views)

by connecting the corresponding metamodels.

A promising approach in this direction is the one proposed by Jochen M. Kuster,

Hagen Volzer and Olaf Zimmermann (Chap. 15). They suggest classifying all

software engineering artifacts in a matrix with at least two suggested dimensions,

the viewpoint and the realization level they belong to. This classification allows for

the establishment of traceability links between artifacts and across dimensions.

Another popular way to enhance traceability is through model-driven engineering.

Huy Tran, Ta’id Holmes, Uwe Zdun and Schahram Dustdar (Chap. 14) use

principles of model-driven architecture to explicitly trace requirements, design

and code. Antony Tang, Peng Liang, Viktor Clerc and Hans van Vliet (Chap. 4)

propose a general purpose ontology that captures the traceability links between co-

evolving architectural requirements and design. By using semantic wiki technology

they show how co-evolution can be managed in a number of typical scenarios

relevant for both business analysts and designers. Inah Omoronyia, Guttorm Sindre,

Stefan Biffl and Tor Stålhane (Chap. 5) propose an approach to automatically

harvest traceability networks. These then help engineers in making architectural

knowledge explicit and facilitate understanding and reasoning. Finally, Rami

Bahsoon and Wolfgang Emmerich (Chap. 20) describe an economics-driven

approach based on “real options” theory. Their approach relates non-functional

requirements to middleware for the selection of architectural decisions and

allows economic decisions and architecture evolution to be considered in the

architecting and requirements engineering process.

Another way to link the activities of requirements engineering and architecting

is through specific problem areas that occur in certain systems or application

domains, or in certain life cycle stages. A fine example of such a problem area is the

volatility that occurs both in requirements specification (where requirements are

uncertain and their values may range) and architecture design (where a product line

may allow for multiple options). In such cases it can be very rewarding to combine

approaches from both fields in order to provide a seamless transition from problems

to solutions.

Zoë Stephenson, Katrina Attwood and John McDermid (Chap. 8) describe

techniques for addressing requirements uncertainty. Uncertainty and product line

engineering are combined in order to translate volatility of requirements into a

choice of design alternatives. Soo Ling Lim and Anthony Finkelstein (Chap. 3)
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investigate the problem of managing change by structuring requirements into

layers depending on their expected change rate. In this way, the resulting design

and implementation can better cope with evolution and the impact of changed

requirements on architecture is minimized. Finally, Outi R€aih€a, Hadaytullah, Kai
Koskimies and Erkki M€akinen (Chap. 18) focus on modifiability, efficiency and

simplicity. They present an innovative method based on genetic algorithms to

generate a software architecture from functional and quality requirements.

One of the areas where good progress has been made in bringing closer the

fields of requirements engineering and architecture was the design and use of

reference architectures, reference models and patterns. In mature domains

where numerous successful systems have been developed, the set of requirements

is well-understood and can be communicated across practitioners. Similarly the

design solutions that have been applied in order to satisfy those requirements are

also documented and reused across different systems. This is one of the few cases

where the match between the problem and the solution space is explicit, mature

and offers fruitful design reusability. We find the documentation of reference

architectures and architecture or design patterns a very promising approach in the

topic of this book and encourage the community to mine for patterns across

systems in different application domains and if possible compile the reusable

design into reference architectures.

The approach proposed by Tim Trew, Goetz Botterweck and Bashar Nuseibeh

(Chap. 13) is an excellent example of a process to develop with a reference architec-

ture even in challenging domains. In their work the target domain is Consumer

Electronics and their approach guides requirements engineers and architects in this

area. Christine Choppy, Denis Hatebur and Maritta Heisel (Chap. 9) use problem

frames as reusable patterns that express the problem. They then gradually transform

these problem frame descriptions into architecture models that can be implemented to

realize the requirements.

In software development practice, the need to relate requirements engineering

and architecture compels practitioners to find pragmatic ways that can achieve the

desired results. Such emerging approaches may not be accompanied by rigorous

empirical evidence, but they do provide value in practice and they do help architects

and requirements engineers to collaborate more efficiently. For example Michael

Stal (Chap. 15) proposes an architecting method that is composed of a set of best

practices within the industry based on the principle: requirements drive the archi-

tecture. Successive layers of an architecture – the Onion model – are used, along

with a set of best-practice process steps, to develop the architecture from

requirements. On a similar vein Bass and Clements (Chap. 11) emphasize the

need to link architecture to a set of requirements that often do not become explicit:

business goals. Similarly Eoin Woods and Nick Rozanski (Chap. 19) also propose

starting from business drivers. However, they support requirements engineers,

architects and project managers in working closely together in allowing the archi-

tecture to constrain, frame and inspire the requirements – the reverse of traditional

requirements-to-architecture system engineering.

21 Conclusions 375



www.manaraa.com

21.2 Looking Ahead

Software requirements and architecture are crucial software engineering artifacts

that are tightly inter-dependent but have been historically researched in separate

communities. In this publishing endeavor one of our aims has been to bring together

experts from both communities and collect their work in bridging requirements and

architecture, the associated knowledge, processes and tools. Despite the progress

that had been achieved in relating requirements and architecture, the mindset of

software engineering practitioners has not shifted much towards bridging the gap.

There is still a persistent boundary in practice between requirements and architec-

ture, which is often difficult to cross, possibly hindering innovation. In fact, many

organizations still have requirements teams and architecture teams with sometimes

very rigid boundaries between their spheres of influence and interaction. We find

this boundary manifesting in many forms: in the software life cycle models (even the

more agile ones); in the types of software development artifacts; in the competencies

and job profiles used in organizations; in the supporting tools; in the education and

training of practitioners; and in the separation of problem- and solution space within

the practitioners’ line of thinking.

In a way, this boundary is the heritage of the waterfall model, a limitation of

which we still suffer. According to this model of software engineering, as discussed

in Chap. 1, requirements and architecture have been always considered as two

different types of animals assigned to distinct development phases and different

spaces (problem and solution). Experience tells that to innovate we need to look at

current approaches with a critical eye, question them, and look at the problem they

solve from totally different angles. Following this line of thought, what if we take

a totally new perspective, and look at the so-called “early phases of the life cycle”

as a continuum where needs and their support co-evolve in a shared decision space?

What if we forget about this requirements-architecture boundary and look at the

evolution of software systems as- a-whole across time and space?

Some works are already following this path. Inspired by the evolution in the way

architecture is defined (from mere solution structure to a set of design decisions),

De Boer and Van Vliet claim that “architectural design decisions and architectur-

ally significant requirements are really the same; they’re only being observed from

different directions” [3]. In discussing the considerable overlap between the two

fields, they argue that we should focus much more on the commonalities and how

and to what purposes we should support different perspectives. They further

observe that “architecture is not merely the domain of the architect. Each architec-

turally significant requirement is already a decision that shapes the architecture”.

This duality is also discussed in terms of roles by Abrahamsson et al. who describe

the agile architect as among others both a designer making choices and a commu-

nicator facilitating requirements elicitation with customers and mediating between

decision makers, project managers, and developers [1].

Another area still needing further development concerns the representation of

architectural requirements and design. In spite of the existing substantial research
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and available solutions, industrial needs are still quite unfulfilled. Practitioners

typically codify information about requirements in a fuzzy way: notations are

informal; natural language (occasionally with some standardized guidelines) is

the most common practice. This “information gap” makes it is impossible to

precisely relate requirements and design, the latter being much more detailed and

formalized. Hence, approaches that assume availability of precise information

do not fill industrial practices. We think that future efforts should thus be striving

for ways to relate just the core pieces of information, such as only those

requirements/design decisions that are more costly to change and that need to be

monitored, or those that recur more frequently in one’s specific industrial domain.

Secondly, links between requirements and architecture design decisions are multi-

dimensional (one requirement influences multiple decisions, and the other way

round), often indirect (one requirements might influence one decision that on its

own might reveal a new requirement, etc.) and of different nature [2]. This complex

network of dependencies, well known in both requirements engineering and soft-

ware architecture fields, makes the problem addressed by this book difficult to solve

in ways that are also applicable in industrial practice. Industrial applicability should

hence become a must have for future research in both requirements engineering and

software architecture fields, as well as when relating software requirements and

architecture.

We further observe increasing attention dedicated to the notion and role of

‘context’ (or environment where a software system lives). In his paper on past,

present and future of software architecture, Garlan [4] identified three major

trends influencing the way architecture is perceived: the market shifting engineer-

ing practices from build to buy; pervasive-computing challenging architecture

with an environment of diverse and dynamically changing devices; and the

Internet transforming software from closed systems to open and dynamically

configurable components and services. These trends, among many others, make

software contexts always smarter and increasingly complex, hence posing chal-

lenging research questions on the co-evolution of contextual (external) and

system (internal) requirements and architectures.

Last but not least, there is one research area that has focused since its inception on

the relation between requirements and architecture: enterprise architecture has been

evolving for three decades around the premise of aligning business processes with the

technical world. Business processes are supported by software systems, which in turn

pose constraints and generate new requirements for the former. However, in spite of

the great deal of research carried out since the 1970s, Business-IT alignment remains

a major issue [5]. The current trend is to tackle the problem through governance

of the software development process, as a mechanism to guarantee meeting the

business goals and mitigating associated risks through policies, controls, measures.

Governance works at the interface between the structure of the business organization

and the structure of the software and thus includes both requirements and architecture

within its scope. Governance is particularly relevant in distributed development

environments, which face increased challenges, as requirement and architecture,

are often produced in different sites.
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